当前位置: 智迪文档网 > 范文大全 > 公文范文 >

2023年度因数教学设计2

| 来源:网友投稿

因数教学设计第1篇一、教学目标(一)知识与技能理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。(下面是小编为大家整理的因数教学设计2,供大家参考。

因数教学设计2

因数教学设计 第1篇

一、教学目标

(一)知识与技能

理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。

(二)过程与方法

通过整数的乘除运算认识因数和倍数的意义,自主探索和总结出求一个数的因数和倍数的方法。

(三)情感态度和价值观

在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。

二、教学重难点

教学重点:理解因数和倍数的含义。

教学难点:自主探索有序地找一个数的因数和倍数的方法。

三、教学准备

教学课件。

四、教学过程

(一)理解因数和倍数的意义

教学例1:

1.观察算式的特点,进行分类。

(1)仔细观察算式的特点,你能把这些算式分类吗?

(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)

第一类是被除数、除数、商都是整数;
第二类是被除数、除数都是整数,而商不是整数。

2.明确因数和倍数的意义。

(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。

(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?

(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。

【设计意图】引导学生从“整数的除法算式”中认识因数和倍数的意义,简洁明了,同时为学习因数和倍数的依存关系进行有效铺垫。

3.理解因数和倍数的依存关系。

(1)独立完成教材第5页“做一做”。

(2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?

【设计意图】引导学生在理解的基础上进行正确表述:因数和倍数是相互依存的,不是单独存在的。我们不能说4是因数,24是倍数,而应该说4是24的因数,24是4的倍数。

4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

(1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?

课件出示:

乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;
而一个数的“因数”是相对于“倍数”而言的,它只能是整数。

(2)今天学的“倍数”与以前的“倍”又有什么不同呢?

“倍数”是相对于“因数”而言的,只适用于整数;
而“倍”适用于小数、分数、整数。

(3)交流汇报。

【设计意图】“一个数的因数和倍数”与学生已学过的乘法算式中的“因数”以及“倍”的概念既有联系又有区别,学生比较容易混淆,这也是学习一个数的“因数”和“倍数”意义的难点。通过观察、对比、交流,引导学生发现一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

(二)找一个数的因数

教学例2:

1.探究找18的因数的方法。

(1)18的因数有哪些?你是怎么找的?

(2)交流方法。

预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。

因为18÷1=18,所以1和18是18的因数。

因为18÷2=9,所以2和9是18的因数。

因为18÷3=6,所以3和6是18的因数。

方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。

因为1×18=18,所以1和18是18的因数。

因为2×9=18,所以2和9是18的因数。

因为3×6=18,所以3和6是18的因数。

2.明确18的因数的表示方法。

(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?

(2)交流方法。

预设:列举法,18的因数有:1,2,3,6,9,18。

3.练习找一个数的因数。

(1)你能找出30的因数有哪些吗?36的因数呢?

(2)怎样找才能不遗漏、不重复地找出一个数的所有因数?

【设计意图】让学生通过自主探索、交流,获得找一个数的因数的不同方法,在练习中体会“一对一对”有序地找一个数的因数,避免遗漏或重复。初步感受一个数的因数的个数是有限的,以及“最大因数、最小因数”的特征。

(三)找一个数的倍数

教学例3:

1.探究找2的倍数的方法。

(1)2的倍数有哪些?你是怎么找的?

(2)交流方法。

预设:方法一:利用除法算式找2的倍数。

因为2÷2=1,所以2是2的倍数。

因为4÷2=2,所以4是2的倍数。

因为6÷2=3,所以6是2的倍数。

方法二:利用乘法算式找2的倍数。

因为2×1=2,所以2是2的倍数。

因为2×2=4,所以4是2的倍数。

因为2×3=6,所以6是2的倍数。……

(3)2的倍数能写完吗?你能继续找吗?写不完怎么办?

(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、图示法)

2.练习找一个数的倍数。

你能找出3的倍数有哪些吗?5的倍数呢?

【设计意图】在理解“倍数”的基础上,让学生进一步体会有序思考的必要性。初步感受一个数的倍数的个数是无限的,以及“最小倍数”的特征。

(四)一个数的因数与倍数的特征

1.从前面找因数和倍数的过程中,你有什么发现?

2.讨论交流。

3.归纳总结

预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;
一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。

(五)巩固练习

1.课件出示教材第7页练习二第1题。

(1)想一想,怎样找不会遗漏、不会重复?

(2)哪些数既是36的因数,也是60的因数?

【设计意图】通过练习,让学生再次体会“1是所有非零自然数的因数”“一个数最大的因数是它本身”和“一个数的因数的个数是有限的”。同时,渗透两个数的“公因数”的意义。

2.课件出示教材第7页练习二第3题。

(1)学生独立完成,交流答案。

(2)思考:5的倍数有什么特征?

【设计意图】渗透5的倍数的特征。

3.课件出示教材第7页练习二第5题。

(1)学生独立完成,交流答案。

(2)你能改正错误的说法吗?

(六)全课总结,交流收获

这节课我们学了哪些知识?你有什么收获?

因数教学设计 第2篇

教学内容:

因数中间 或末尾有0的三位乘两位数的乘法。课文第52页(例2),及相应的“做一做”及练习八的1—4题)

教学目标:

1、 使学生掌握因数中间或末尾有0的计算方法,进一步认识0在乘法运算中的特性。

2、培养学生类推迁移的能力和计算的能力。

3、使学生经历因数中间或末尾有0的计算的过程,进一步掌握算理和计算的方法 。

4、培养学生认真计算的良好学习习惯。

教学重点:

掌握因数中间或末尾有0的计算方法。

教学难点:

掌握竖式的简便写法。

教具准备:

图片。

教学过程:

一、复习导入;

1、 口算

40×72= 600×300= 30×23= 53×30= 20×700= 40×22= 608×5=

40×72= 40×72= 40×72= 20×20= 40×90= 502×7= 908×4=

2、笔算 708×6= 790×8= 54×278=

说一说笔算的方法是什么?

3、这节课继续学习笔算乘法。板书课题:笔算乘法

二、探究新知.

例2、特快列车1小时可行160千米。普通列车1小时可行106千米它们30小时各行多少千米?。

问:说一说这题如何列式?这是一道什么样的乘法算式?

板书课题补充;
因数中间 或末尾有0的乘法。

怎么计算出结果?能不能用我们以前学过的旧知识来解决,自己试一试。学生独立进行计算。

请不同算法的学生说一说口算的过程。

1) 160×30= 问:写竖式时,如何处理0和非0数字的对位问题?怎样确定积的末尾0的个数?

160×30=4800

2)106×30= 自己试一试

学生反馈时讨论:

(1) 竖式的简便写法,为什么不写成

106

× 30

————

(2)计算106×30时,既然中间的0与3相乘得0,那么这个过程可以不要吗?如何写这一位的积?

106×30=3180

106

× 30

——————

3180

计算时哪个竖式更简便?

小结:因数中间或末尾有0的计算方法是什么?

师生归纳:先把0前面的数相乘,乘完以后再看乘数末尾共有几个0,就在乘得的数的末尾填写几个0。

三、巩固练习:

1、书后第53页做一做

2、练习八的1、2独立完成

四、课堂总结:

今天你都学会了什么?有什么收获?

五、作业:

练习八第3、4、7题。

因数教学设计 第3篇

教学内容:

人教版小学数学第十册教材12-13<<因数和倍数>>

教学要求:

1、 通过学生自学让学生理解掌握因数和倍数的意义,明确因数和倍数是相互依存的。

2 、通过学生合作学习,让学生掌握找一个数的因数的方法。

3、 培养学生的自学能力、观察能力、抽象概括能力以及学生的合作探究能力。

4 、培养学生的合作意识、探究意识、以及热爱学习数学的情感。

教学重点:理解因数和倍数的意义

教学重点:掌握找一个数因数的方法

教学过程:

一 、创设情境,引入新课

师:同学们,你们喜欢唱歌吗?

生:喜欢。

师:今天老师特别想听一首歌《世上只有妈妈好》,你们愿意唱给老师听吗?

生:(可以)生唱。

师:谁愿意介绍一下自己妈妈姓什么吗?

生:我妈妈姓马。

师:我们叫她马阿姨可以吗?

生:可以。

师:你能用马阿姨和陈果说一句话吗?

生:马阿姨是陈果的妈妈,陈果是马阿姨的儿子。

师:能不能单独的说马阿姨是妈妈,陈果是儿子?

生:不能。因为他们不能分开,必须说谁是谁的妈妈,谁是谁的儿子。

师:其实在数学中也有这样的两个数,它们是相互依存的,他们也是不能单独存在的,那就是——《因数和倍数》,今天我们一起来学习。

师:板书因数和倍数。请同学们齐读课题。

生:齐读课题

师:读了课题你想知道什么?

生1:想知道因数和倍数的意义。

生2:怎样找一个数的因数。

生3:怎样找一个数的倍数?

........

师:这些问题是老师告诉你们,还是你们自己去学习?

生:我们自己学习。

【评析:用学生最熟悉的歌创设情境,既激发了学生的兴趣,又拉近了师生之间的距离,创设了一个宽松、和谐的氛围,以此从熟悉的母子或父子关系出发,让学生理解了相互依存的关系,为理解倍数和因数的相互依存关系作铺垫,体现了数学来源与生活。】

二、自学引导

1 、请同学们带着想知道的问题先自学教材12-13,然后完成学案一

2 、检测自学情况

(一)、填空

(1) 3×4=12

3是12的( ) 4也是12的( )

12是3的( ) 12也是4的( )

2×6=12

2和6是12的( ) 12是2和6的( )

1×12=12

1和12是12的( ) 12是1和12的( )

12的因数有:( )

(2) a×b=c (a、b、c均为非零自然数)

a是c的( ) b是c的( )

c是a的( ) c是b的( )

(二)、判断

(1)、因为0.8×5=4 所以0.8是4的因数。( )

(2)、因为3×6=18 所以18是倍数,3和6是因数。( )

(3)、因为24÷6=4所以24是6的倍数,4是24的因数。

(生自学并完成学案一,师指导)

师:有谁愿意把你的学习作品展示大家。

生:展示学习作品。

师:看了张江楠的学习作品你想说点什么?(没有学生举手)你们没有问题,那老师有问题请教你们了。

师:
在 a×b=c 中, 为什么a、b、c均为非零自然数?

生:为了方便,我们研究因数和倍数只是整数(不包括零)

师:请同学齐读这句话。

生:齐读

师:因为0.8×5=4 所以0.8是4的因数。( )这句话对吗?

生:不对,因为0.8是小数不是整数。

师:因为3×6=18 ,所以18是倍数,3和6是因数。( )这句话对吗?

生:不对,因为因数和倍数是相互依存的,是不能单独存在的。

师:因为24÷6=4所以24是6的倍数,4是24的因数。

生:对

师:请读 a×b=c (a、b、c均为非零自然数)

a是c的( 因数 ) b是c的( 因数 )

c是a的(倍数 ) c是b的( 倍数 )

生:齐读。

师:通过你们的自学初步理解因数和倍数的意义。你们会找一个数的因数吗?

生:会

师:我们试试行吗?

生:行

师:来个大的,还是小的。

生:来个大的。

师:30可以吗?

生:可以

师:学号是30的因数的请起立,(不完整)看来找一或几个不难,要找得既准确又完整,就需要方法了。你们有没有信心自己去探究。

生:有

师:那好,你们4人小组合作找出30的因数,并完成学案二。

【评析:把课堂留给学生,让学生通过自学完成学案,体现了学在前,老师指导在后,充分让学生独立思考,获取知识。这样通过自学----完成学案---适时指导,让学生真正成为学习的主人,理解因数和倍数的意义。】

三 、合作学习探究找一个数因数的方法

1 、小组合作找出30的因数有哪些?(有乘法和除法两种,用你们最喜欢的方法)。再组内讨论以下三个问题

( )×( )=( )

( )×( )=( )

( )×( )=( )

( )×( )=( )

........

30的因数有:( )

( )÷( )=( )

( )÷( )=( )

( )÷( )=( )

( )÷( )=( )

........

30的因数有:( )

(1)你们是怎样找一个数的因数的?

(2)你们找一个数的因数是怎样才能做到既准确,又完整的?

(3)你们找一个数的因数是找到什么时候为止?

2、小组汇报

生1:30的因数有(1 2 3 5 6 10 15 30)

师:你是怎样找一个数的因数的?

生1:1×30=30找到1 30

2×15=30找到2 15

3×1030找到3 10

5×6=30找到5 6

生2::30÷1=30找到1 30

30÷2=15找到2 15

30÷3=10找到3 10

30÷5=6找到5 6

........

生5:从1开始去乘一个数等于30的两个数就是30的因数。

生6:用30除以1到它本身能整除的就是30的因数。

生7:从1开始有序成对找到重复或接近为止

3 、引导学生总结找一个数因数的方法

从1开始用乘法或除法有序成对的找,找到重复或接近为止。

【评析:找一个数的因数级发及发现归纳其特点,教师让学生通过小组合作,相互评价,培养学生的合作意识,发挥学生的合作能力,归纳出找一个因数的方法,充分体现了学生是主体。】

四、目标检测

1、 找36、28的因数

(采用师生对口令方法,强调重复写一个)

2、先找出下列各数的因数,再观察这几组数据你有什发现写在括号里。

8的因数有:( )

11的因数有:( )

15的因数有:( )

24的因数有:( )

你的发现是( )

3你的学号是( )

你学号的因数有( )

学生完成后展示学习作品并汇报

生1:我发现了每个数的因数都有1。

生2::我发现了每个数的因数都有他本身。

........

生6:我发现了一个数的因数最小是1,最大是它本身。

生7:我发现了一个数的因数的个数是有限的,因为一个数的因数最小是1,最大是它本身

生齐读一个数的因数最小是1,最大是它本身。一个数的因数的个数是有限的。

4、游戏:

师:学号是25的因数的同学请起立。

学号是48的因数的同学请起立。

学号是18的因数的同学请起立。

1号你为什么不坐下

生:因为1是所有自然数的因数,坐下了还要起立。

师:同学们想挑战老师吗(想)比老师叫起立的人多。

生1:30的因数

生2:学号有两个因数的请起立。

生3:学号有三个因数的请起立。

........

生7:学号有因数1请起立。

生8:学号因数最大是自己学号的请起立。

【评析:找一个数的因数,归纳发现找因数的方法并不是难事,而对“一个数最大因数是它本身,最小因数是1”的理解有一定难度。教师在让学生做练习的同时发现规律,同时通过游戏加深了对知识的理解,在游戏中体会数学的乐趣。实现了巧练、活练,真正把数学运用于生活。】

五、总结反思

1、这节课你有什么收获?

2、如果还有不懂的小组内讨论。

【总评析:本节课总的可用六个字来概括,“引拨补、疑思用”师,即,教师:引——拨——补;
学生:疑——思——用。学生通过自学,教师引导,产生疑问,在教师的指引下进行小组合作探究、分析、领悟,再加上教师的点拨,让全体学生进行反思、掌握学法、建构数学模型,找一个数的因数的方法,让学生从感性认识——理性认识——实践运用——拓展提高,经历了学习数学的过程,真正体会了学习数学的乐趣。本节课“虽已毕,但趣犹在”,留给我们回味的很多。】

板书设计:

因数和倍数

30的因数有:1 2 3 5 6 10 15 30

有序 成对 准确 完整

因数教学设计 第4篇

教学重点:掌握因数末尾有0的乘法的计算方法。

教学难点:探索计算方法。

教学过程:

一、沟通联系 促进迁移

1.出示准备题,师根据学生的口算,逐题写出每题的得数。

20×3 12×4

200×3 120×4

20xx×3 1200×4

2观察每组题,你发现了什么?

第二个因数不变,第一个因数末尾有几个0,积的末尾就添写几个0。

3.讨论怎样算比较简便?小结学生的回答:第一个因数末尾有0的乘法,先用第二个因数去乘第一个因数中0前面的数,再看第一个因数末尾有几个0,就在乘得的数后面添写几个0。

二、创设情景 探索新知

1.设疑,引入新课

课件出示图书室图片,同学们这是哪?去过图书室吗?进了图书室,你看到了什么,你有什么感受?

让学生谈谈读书有什么好处,鼓励学生多读书。

2.合作学习,探讨算法

为了丰富大家的课余生活,学校图书室买了3套《小小科学家》丛书,每套280元,请同学们帮忙算一算,一共要付多少元?

(1)指导学生理解题意。

“每套280元”是什么意思?怎么求“一共需要多少元?”

根据数量关系,列算式:
280×3 = ?

(2)这道题怎样笔算呢?请同学们自己试一试。算完后和同桌的同学交流自己的算法。

(3)学生汇报,展示不同的算法,说出算理。

280×3=840(元)

第一种算法:
第二种算法:

2 8 0 2 8 0

× 3 × 3

8 4 0 8 4 0

3.两种算法,你更喜欢哪一种算法?

如果用第二种算法,笔算时,你想提醒大家注意什么?(小组讨论,全班交流)

(1)列竖式时要怎样对齐?

(第二个因数要和第一个因数0前面的数对齐)

(2)怎样相乘?(先把0前面的数相乘)

(3)乘完后怎样写0?(看因数的末尾有几个0,就在乘得的数的末尾添写几个0)

4.精讲点拨:提示算法

三、巩固知识 加深理解

1. 速度快车,看你能不能搭上这辆快车。

230×6 460×5 2900×3 1500×4

2.进入数学王国,我们来到了数学门诊部,判断,错的找出原因后改正。

1600 3500 460

×5 ×2 ×4

800 7000 184

3. 判断积的末尾至少有几个0后再计算。

540×6= 1800×4=

560×5= 20xx×3=

4.设计广场,请你当小小设计师。

( )×( )=2400

(四)师生小结,畅谈收获。

完成了数学王国的旅程,这节课你有什么收获?

因数教学设计 第5篇

教学目标:

1、依据倍数和因数的含义和已有的乘除法知识,自主探索总结找一个数的倍数和因数的方法.

2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。教学重点:理解因数和倍数的含义.教学难点:自主探索并总结找一个数的倍数和因数的方法.教学过程:

一、情境激趣。

脑筋急转弯:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?

教师说明:人和人之间的关系是相互依存,数和数之间也是相互依存的。揭题:

二、初步认识倍数和因数。

1、创设情境。

用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。

学生汇报拼法,教师依次展示长方形的拼图,并板书:

4×3=1

26×2=12

12×1=12

教师根据4×3=12揭示:4×3=12

12是4的倍数,12也是3的倍数,4和3都是12的因数。提出要求:你能用倍数和因数说一说6×2=12

12×1=12吗?

2、深化感知。

(1)你能举出一些算式,说说谁是谁的倍数,谁是谁的因数吗?

教师说明:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。

三、探求一个数的倍数。

1、设疑。

在刚才的学习中,我们知道了3的倍数有

12、18。除了

12、18还有别的吗?请在纸上写出3的倍数。你能完成得又对又好吗?。学生在书写过程中引发冲突:为什么停下来不写了?有什么困难吗?引导学生讨论后达成共识:加省略号表示写不完。

2、交流。

揭示“有序”,为什么要有序地写倍数呢?全班讨论:“你是怎么写3的倍数的?”。

13×

2 3×

3……

3

3+3

6+3

……

一三得三二三得六三三得九

引导学生讨论得出:用依次×

1、×

2、×3……写出3的倍数。

3、深化:请写出2的倍数,5的倍数。

4、引导观察,发现规律。

小组讨论:观察这三道例子,你有什么发现?全班交流,概括规律。

5、小结:发现这些规律可以更好地帮助我们寻找一个数的倍数。

四、探求一个数的因数。

1、设疑。

刚刚我们学会了找一个数的倍数,接下来我们来找一个数的因数。

请写出36的所有因数,

2、组织讨论。

你是怎么找36的因数的?

( )×( )=36从一道乘法算式中可以找到2个36的因数,6×6=36呢?

36÷( )=( )从一道除法算式中也可以找到2个36的因数。

3、讨论“多”。问:写得完吗?你可以按照什么顺序写?

师动画演示36的因数(从两端往中间写),同时指出:当两个因数越来越接近时,也就快要写完了。

4、巩固深化。

请写出15的因数,16的因数。学生练习后组织评讲。

5、引导观察,发现规律。

问:通过观察这三道例子,你能发现什么规律?

6、小结:写一个数的因数时可以从1和它本身来写,从小到大依次寻找。

五、巩固拓展。

1、快乐大转盘

2、猜数游戏。

六、老师总结:利用微课对整节课做一个总结。

七、学生总结:在这节课的学习中,有哪些地方给你留下了深刻的印象?

因数教学设计 第6篇

教学目标:

1、掌握因数末尾有0的竖式的简便写法及计算方法

2、口算、笔算交互进行,培养学生自主解决问题的能力

教学过程:

一、情景导入

1、出示例题情景:

特快列车每小时可行160千米

普通列车每小时可行106千米

它们30小时各行多少千米?

2、学生根据题意,独立写出解题算式,独立进行计算

3反馈第(1)题:请不同算法的学生说一说

4、重点围绕竖式的简便写法和积进行讨论

①、写竖式时,如何处理0和非0数字的对位问题

②、怎样确定积的末尾零的个数

5、反馈第(2)题:重点围绕竖式的简便写法

二、质疑与小结

1、因数末尾有0如何列竖式简便?应注意什么?

两个因数末尾都有0的简便算法是先把0前面的数相乘,再看两个因数末尾一共有几个0,则在积的末尾添写几个0。

2、因数中间有0,计算时应注意什么?

乘数中间有0的乘法,用0乘这一步可以省略。但要注意用乘数哪一位上的数乘,乘得的数的末位就要和那一位对齐。

三、知识反馈:

1、学生试练P53做一做

360

25

360

25

2、比较 哪个算式简便,为什么?

四、巩固练习:

1、练习八:1、2、3、4

2、学生独立完成,全班讨论订正

五、全课小结

xxx

因数教学设计 第7篇

教学目标:

1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:理解因数和倍数的含义。

教学过程:

一、创设情境,引入新课

师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是……?

生:父子(父母、母子、母女)关系。

师:我和你们的关系是……?

生:师生关系。

师:对,我是你们的老师,你们是我的学生,我们的.关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

二、认识因数与倍数

师:我们已经认识了哪几类数?

生:自然数,小数,分数。

师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。

根据学生的汇报板书:

1×12=12 2×6=12 3×4=12

12×1=12 6×2=12 4×3=12

12÷1=12 12÷2=6 12÷3=4

12÷12=1 12÷6=2 12÷4=3

师:在这3组乘、除法算式中,都有什么共同点?

生:第①组每个式子都有1、12这两个数。

生:第②组每个式子都有2、6、12这三个数。

生:第③组每个式子都有3、4、12这三个数。

师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本P12。

师:2和6与12的关系还可以怎样说呢?

生:2和6是12的因数,12是2的倍数,也是6的倍数。

师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

生:可以说12是12的因数吗?

生:我认为可以,12×1=12,1和12都是12的因数。

师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

师出示:11÷2=5……1。问:11是2的倍数吗?为什么?

生:我认为不是,因为11除以2有余数。

师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?

生:2×4=8,2和4是8的因数,8是2和4的倍数。

生:40÷2=20,40是2和20的倍数,2和20是40的因数。

师出示:0×3  0×10

0÷3  0÷10

通过刚才的计算,你有什么发现?

生:我发现0和任何数相乘,都等于0。

生:0除以任何数都等于0。

生:我补充,0不能作为除数。

师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?

生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

师:这个问题提得好!谁能回答他的问题?

生:我觉得好像不一样,但不知道为什么?

生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!

三、课堂练习

1.下面每一组数中,谁是谁的倍数,谁是谁的因数。

16和2 4和24 72和8 20和5

2.下面的说法对吗?说出理由。

(1)48是6的倍数。

(2)在13÷4=3……1中,13是4的倍数。

(3)因为3×6=18,所以18是倍数,3和6是因数。

师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

生:因为没有说明18是谁的倍数,所以不对。

师:你认为怎样说才正确呢?

生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。

①( )是4的倍数

( )是60的因数

( )是5的倍数

( )是36的因数

②请一名学生模仿刚才老师的要求,继续练习。

③想一想,应该提什么要求,让全班同学都能举手?

生:( )是1的倍数。

师:哗,全班都举手了,谁能总结刚才的说法。

生:任何不包括0的自然数都是1的倍数。

因数教学设计 第8篇

教学目标:

1、从操作活动中理解因数的意义,会判断一个数是不是另一个数的因数。

2、培养学生抽象、概括与观察思考的能力,渗透事物之间相互联系,相互依存的辨证唯物主义观点。

3、培养学生的合作意识、探索意识以及热爱数学学习的情感。

教学重点:

理解因数的意义

教学难点:

能熟练地找一个数的因数。

教具准备:

多媒体课件

教学过程:

一、引入新课:

1、课件出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?你还能找出12的其他因数吗?

(指名生说一说)

4、你能不能写一个算式来考考同桌?学生写算式。

5、师:今天我们就来学习因数和倍数。(板书课题:因数和倍数)

齐读教材第12的注意。

二、自学预设:

1、仔细看例一,什么叫因数和倍数?像这样的乘除法算式中的三个数之间还有另一种说法,你想知道吗?

2、怎样找因数?例如18,36的因数是什么?

3、因数有什么特点?一个数的最小因数是多少?有几个因数?(举例说明)

三、认识因数与倍数,展示交流

(一)找因数:

1、出示例1:18的因数有哪几个?

师:从12的因数可以看出:一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成汇报:(18的因数有:1,2,3,6,9,18)

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示。课件出示

5、小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二).我的质疑

1.谁能举一个算式例子,并说说谁是谁的因数?

2.讨论:0×30×100÷30÷10

提问:通过刚才的计算,你有什么发现?

3.注意:

(1)为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数,但不包括0。

(2)这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式名称的“因数”,两者不能搞混淆。

四、反馈检测

1.下面每一组数中,谁是谁得因数?

16和24和24,72和820和5

2.下面得说法对吗?说出理由。

(1)48是6的倍数

(2)在13÷4=3……1中,13是4的倍数

(3)因为3×6=18,所以18是倍数,3和6是因数。

3、完成P15第2题

学生自己独立完成,讲评时让学生说一说,是怎么想的?

五、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

因数教学设计 第9篇

一、教学内容

1.因数和倍数

2.2、5、3的倍数的特征

3.质数和合数

二、教学目标

1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2.使学生通过自主探索,掌握2、5、3的倍数的特征。

3.逐步培养学生的数学抽象能力。

三、编排特点

1.精简概念,减轻学生记忆负担。

三方面的调整:

A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。

B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。

C.公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。

2.注意体现数学的抽象性。

数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。

四、具体编排

1.因数和倍数

因数和倍数的概念

过去:用÷=表示能被整除,÷=表示能被整除。

现在:用=直接引出因数和倍数的概念。

(1)用2×6=12给出因数和倍数的概念。

(2)用3×4=12进一步巩固上述概念。

(3)让学生利用因数和倍数的概念自主发现12的其他因数。

(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。

(5)说明本单元的研究范围。

注意以下几点:

(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。

(2)因数和倍数是一对相互依存的概念,不能单独存在。

(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。

(4)注意区分“倍数”与前面学过的“倍”的联系与区别。

例1(一个数的因数的求法)

(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。

(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。

一个数的因数的特点

(1)最大因数是其自身,最小因数是1。

(2)因数个数有限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

例2(一个数的倍数的求法)

(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。

(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。

做一做

与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。

一个数的倍数的特点

(1)最小倍数是其自身,没有最大的倍数。

(2)因数个数无限。

(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。

2.2、5、3的倍数的特征

因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。

2的倍数的特征

(1)从生活情境“双号”引入。

(2)观察2的倍数的个位数,总结出2的倍数的特征。

(3)介绍奇数和偶数的概念。

(4)可让学生随意找一些数进行验证,但不要求严格的证明。

5的倍数的特征

(1)编排方式与2的倍数的特征类似。

(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。

3的倍数的特征

(1)强调自主探索,让学生经历观察――猜想――推翻猜想――再观察――再猜想――验证的过程。

(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。

(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。

3.质数和合数

质数和合数的概念

(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。

(2)可任出一个数,让学生根据概念判断其为质数还是合数。

例1(找100以内的质数)

(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。

(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。

五、教学建议

1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。

从因数和倍数的含义去理解其他的相关概念。

2.要注意培养学生的抽象思维能力。

因数教学设计 第10篇

教学内容:青岛版教材小学数学五年级上册88—91页。

教学目标:

1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的.数及其个数方面的特征。

2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。

教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。

教学难点:探索求一个数因数或倍数的方法。

教具准备:多媒体课件、学生练习题

教学过程:

一、谈话导入。

师:同学们看这是什么?

生:小正方形。

师:想不想知道王老师给大家带来了多少个这样的小正方形?

生:想。

师:多少个?

生:12个。

师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?

生:能。

【设计意图】:以学生熟悉情景引入,激发学生的好奇心。

二、教学因数和倍数的意义

师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?

生:好!

学生汇报:

生1:1×12=12

师:他是怎么摆的?

生:一行摆1个,摆了12行;
也可以一行摆12个,摆1行。

课件出示摆法。

师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)

生2:2×6=12

师:猜一猜他是在怎么摆的?

生:一行摆2个,摆了6行;
也可以一行摆6个,摆2行。

师:这两种情况,我们也算一种。

生3:3×4=12

师:他又是怎么摆的?

生:一行摆3个,摆了4行;
也可以一行摆4个,摆3行。

师:还有其他摆法吗?

生:没有了。

师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)

2.教学“因数和倍数”的意义。

师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。

学生汇报:任选一道回答。

生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。

师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。

师:还有一道算式,谁来说一说?

生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。

师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。

师:通过刚才的练习,你有没有发现12的因数一共有哪些?(生边说老师边有序的用课件出示12的所有的因数。)

师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。

3、5、18、20、36

【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。

三、教学寻找因数的方法。

1、找一个数的因数。

师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?

师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?

生:有。

师:老师提个要求:

1)、可以独立完成,也可以同桌交流。

2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。

2、探索交流找一个数的因数的方法。

找一名有代表性的作业板书在黑板上。

师:他找对了吗?

生:没有,漏下了一对。

师:为什么会漏掉?仅仅是因为粗心吗?

生:不是,他没有按照一定的顺序找!

师:那么要找到36所有的因数关键是什么?

生:有序。

师生共同边说边有序的把36的所有的因数板书出来。师:还有问题吗?

生:没有了。

生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?

生:再接着找就重复了。

师:那么找到什么时候就不找了?

生:找到重复了,就不在往下找了。

师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。

师:有失误的学生对自己的错误进行调整。

3、巩固练习。

找出下面各数的因数。

4、寻找一个数的因数的特点。

【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。

四、教学寻找倍数的方法。

1、找一个数的倍数。

师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?

生:能!

师:试试看,找个小的可以吗?

生:行!

师:找一下3的倍数。30秒时间,把答案写在练习纸上。??

师:有什么问题吗?

生:老师,写不完。

师:为什么写不完?

生:有很多个!

师:那怎么才能全都表示出来呢?

生:可以加省略号。

师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?

师:谁能总结一下你是怎样找到的?

生:从小到大依次乘自然数。

师:你真会思考!

课件出示3的倍数。

2、找5、7的倍数。

师:我们再来练习找一下5的倍数。

生:5的倍数有:5、10、15、20、25??

生:7的倍数有:7、14、21、28、35??

师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?

生:能!

学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。

四、知识拓展

认识“完美数”。

师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。

小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。

【设计意图】丰富学生的知识,陶冶学生的情操。

教学反思:

找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。

因数教学设计 第11篇

教学内容:

《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。

教学目标:

1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:理解因数和倍数的含义。

教学过程:

一、创设情境,引入新课

师:每个人都有自己的好朋友,你能告诉我你的好朋友是谁吗?

学生回答。

师:哦,老师知道了。XXX是XXX的好朋友。如果他这样介绍:XXX是好朋友。能行吗?

生:不行,这样就不知道谁是谁的好朋友了。

师:朋友是表示人与人之间的关系,我们在介绍的时候就一定要说清楚谁是谁的朋友,这样别人才能明白。在数学中,也有描述数与数之间关系的概念,比如说:倍数和因数。今天这节课我们就要来研究有关这个方面的一些知识。

二、探索交流,解决问题

1、师:我们已经认识了哪几类数?

生:自然数,小数,分数。

师:现在我们来研究自然数中数与数之间的关系。请你们根据12个小正方形摆成的不同长方形的情况写出乘、除算式。

根据学生的汇报板书:

1×12=12 2×6=12 3×4=12

12×1=12 6×2=12 4×3=12

12÷1=12 12÷2=6 12÷3=4

12÷12=1 12÷6=2 12÷4=3

师:在这3组乘、除法算式中,都有什么共同点?

生:第①组每个式子都有1、12这两个数。

生:第②组每个式子都有2、6、12这三个数。

生:第③组每个式子都有3、4、12这三个数。

师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?

师:2和6与12的关系还可以怎样说呢?

生:2和6是12的因数,12是2的倍数,也是6的倍数。

师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

生:可以说12是12的因数吗?

生:我认为可以,12×1=12,1和12都是12的因数。

师:说得真好,从上面3组算式中,

我们知道1,2,3,4,6,12都是12的因数。

师出示:

1、根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。

12 × 5=60 45 ÷ 3=15

11 × 4=44 9 × 8= 72

2、8是倍数,4是因数。

强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。

因数和倍数不能单独存在。

师出示:0×3 0×10

0÷3 0÷10

通过刚才的计算,你有什么发现?

生:我发现0和任何数相乘,都等于0。

生:0除以任何数都等于0。

生:我补充,0不能作为除数。

师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?

生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

师:这个问题提得好!谁能回答他的问题?

生:我觉得好像不一样,但不知道为什么?

生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!

2、试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

2、3、5、9、18、20

师:老师在听的时候发现有好几个数都是18的因数,你也发现了吗?谁能把这6个数中18的因数一口气说完?

生:2、3、9、18都是18的因数。

师:18的因数只有这4个吗?

师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。

投影仪出示学生的不同作业。交流找因数的方法。

师:出示18的因数有:1、18、2、9、3、6;

你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?

生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。

师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?

生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……

师:用乘法和除法找都可以,你们认为用什么方法更容易呢?

生:乘法。

板书:18的因数有:1、2、3、6、9、18。

师:18的因数也可以这样表示。(课件出示集合圈图)

因数教学设计 第12篇

教学内容:

人教版小学数学五年级下册第13~16页。

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:

理解因数和倍数的含义;
自主探索并总结找一个数的因数和倍数的方法。

教学难点:

自主探索并总结找一个数的因数和倍数的方法;
归纳一个数的因数的特点。

教学具准备:

学号牌数字卡片(也可让学生按要求自己准备)。

教法学法:

谈话法、比较法、归纳法。

教学过程:

复习

1、4×0.5=2,所以4和0.5都是2的因数,2是4和0.5的倍数。这句话对吗?

2、我们在因数与倍数的学习中,只讨论什么数?

3、8÷2=4,所以8是倍数,4是因数。这句话对吗?

今天,我和大家一道来继续共同探讨“因数与倍数”

合作交流、共探新知

探究找一个数的因数的方法(谈话法、比较法、归纳法)

请认为自己是18的因数的同学带着号码牌上台来。

a、学生上台――找对子,击掌―――。完后提示:老师觉得有点乱,有没有什么方法可以让这些找因数的方法有序些?

b、学生再次依照1x18,2x9,3x6的顺序一个个讲出乘法算式。

学生预设:有的学生可能会说还有6x3,9x2,18x1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。

c、可是老师觉得这样子写又有点乱,有没有更好的办法让人看得更清楚些,让这些数字的有序地排列?

d、介绍写一个数因数的方法

可以用一串数字表示;
也可以用集合圈的方法表示。

说一说:

18的因数共有几个?

它最小的因数是几?

最大的因数是几?

做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)

a、30的因数有哪些,你是怎么想的?

b、36的因数有几个?你是怎么想的?为什么6x6=36,这里只写一个因数?

c、对比18、30、36的因数,分别让学生说说每个数最小的因数是几?最大的因数是几?各有几个因数?

d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?

因数教学设计 第13篇

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。

2、培养学生自主探索、独立思考、合作交流的能力。

3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

教学重点:

1、理解掌握质数、合数的概念。

2、初步学会准确判断一个数是质数还是合数。教学难点:区分奇数、质数、偶数、合数。

教学过程:

一、探究发现,总结概念:

1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?学生独立思考,然后全班交流。

2、师:这样的四个小正方形能拼出几个不同的长方形?学生各自独立思考,想像后举手回答。

3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?师:我看到许多同学不用画就已经知道了。(指名说一说)

4、师:同学们,如果给出的正方形的个数越多,那拼出的不同的长方形的个数——,你觉得会怎么样?

学生几乎是异口同声地说:会越多。

师:确定吗?(引导学生展开讨论。)

5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种?什么情况下拼得的长方形不止一种?并举例说明。

先让学生小组讨论,然后全班交流,师根据学生的回答板书。

师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?学生独立思考后,在小组内进行交流,然后再全班交流。

引导学生总结质数和合数的概念,结合学生回答。

6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。

7、师:那你们认为“1”是什么数?让学生独立思考,后展开讨论。

二、动手操作,制质数表。

师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)师:这表从哪来呢? (教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)

2、让学生动手制作质数表。

3、集体交流方法。

三、练习巩固:完成练习四第

1、2题。

四、课题小结:

这节课你在激烈的讨论中有什么收获?

因数教学设计 第14篇

教学内容:教科书12---16页的学习内容

教学目标

通过对比学习,加深因数和倍数意义的理解,通过在意义、找的方法以及计数等几个方面对比,进一步理清因数与倍数的区别于联系,准确把握因数与倍数。

教学重点:因数与倍数的对比。

教学难点:用准确语言表达。

教学准备:实物投影

教学活动

(一 )基础训练

【口答】

下面的说法对码?如果不对,请改正。

(1)32÷4=8,所以42是倍数,4是因数

(2)12的因数只有2、3、4、6、12

(3)1是1,2,3,…的因数

(4)60的最大因数和最小倍数都是60

(5)5一共有10000个倍数

(6)一个数的倍数一定大于它的因数

【解答题】

因数能否数完?倍数呢?

(二) 新知学习

【典型例题】

1.分别找出16的因数和倍数

2.仔细想想,找出16的所有因数和倍数的感受相同码?

2.填表。

不同方面联系

意义寻找方法能否找完有无最大与最小表示

因数

倍数

(三) 巩固练习(10题)

【基础练习】

1.选择正确答案的序号填在括号内。

(1)下面算式中能表示63是7的倍数的算式是()

① 7×9=63 ② 63÷8=7……7 ③ 63÷21=3

(2)9的因数有( )个

① 2 ② 3③ 4

(3)不能够表示出“倍数”与“因数”关系的算式是()

① 19÷3 = 6……1② 24÷6=4 ③ 17×4=68

【提高练习】

1. 按要求写数

6的倍数(写出5个) 32的所有因数 120的所有因数

2.练一练第7题。

教师可以鼓励学生课后查阅相关资料,把数学学习由课堂引申到课外。

通过本题计算在月球和火星上的体重,激发学生的好奇心,进行保护地球的环保教育

3.填表。

(1)48个同学表演团体操,把队伍的排列情况填写完整。

排数123456789

每排人数4824

每排都是48的因数码?

(2)乘坐碰碰车每人应付8元,你能把表填完整码?

乘坐人数12345……

应付元数816

【拓展练习】

1.填数。

2.五年(1)班同学参加植树活动,要植树24棵,如果要求每行植树的棵树相同,有几种不同的植法?如果要50棵树呢?

向学生简介林可以植树的好处,净化空气,还可以降低噪音,美化环境的功效。

(五)教学效果评价(小测题2—3题)

1.24的因数有哪些?

2.36是哪些数的倍数?

课后反思:

通过引导学生从一个数的倍数的定义出发,推出该数和任意非零自然数之积都是该数的倍数。2的倍数也就是2和任意非零自然数的乘积,学生在列乘法算式时发现这样的算式是列不完的,总结出2的倍数的个数是无限的。进而推倒出:一个数的倍数的个数是无限的。只有最小的倍数,没有最大的倍数。学生亲历了知识的形成过程,既探究了知识,又形成了总结概括的能力。

因数教学设计 第15篇

一、教学目标

(一)知识与技能

理解因数和倍数的意义以及两者之间相互依存的关系,掌握找一个数的"因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。

(二)过程与方法

通过整数的乘除运算认识因数和倍数的意义,自主探索和总结出求一个数的因数和倍数的方法。

(三)情感态度和价值观

在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。

二、教学重难点

教学重点:理解因数和倍数的含义。

教学难点:自主探索有序地找一个数的因数和倍数的方法。

三、教学准备

教学课件。

四、教学过程

(一)理解因数和倍数的意义

教学例1:

1.观察算式的特点,进行分类。

(1)仔细观察算式的特点,你能把这些算式分类吗?

(2)交流学生的分类情况。(预设:学生会根据算式的计算结果分成两类)

第一类是被除数、除数、商都是整数;
第二类是被除数、除数都是整数,而商不是整数。

2.明确因数和倍数的意义。

(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,12÷2=6,我们就说12是2的倍数,2是12的因数。12÷6=2,我们就说12是6的倍数,6是12的因数。

(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?

(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。

【设计意图】引导学生从“整数的除法算式”中认识因数和倍数的意义,简洁明了,同时为学习因数和倍数的依存关系进行有效铺垫。

3.理解因数和倍数的依存关系。

(1)独立完成教材第5页“做一做”。

(2)我们能不能说“4是因数”“24是倍数”呢?表述时应该注意什么?

【设计意图】引导学生在理解的基础上进行正确表述:因数和倍数是相互依存的,不是单独存在的。我们不能说4是因数,24是倍数,而应该说4是24的因数,24是4的倍数。

4.理解一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

(1)今天学的一个数的“因数”与以前乘法算式中的“因数”有什么区别呢?

课件出示:

乘法算式中的“因数”是相对于“积”而言的,可以是整数,也可以是小数、分数;
而一个数的“因数”是相对于“倍数”而言的,它只能是整数。

(2)今天学的“倍数”与以前的“倍”又有什么不同呢?

“倍数”是相对于“因数”而言的,只适用于整数;
而“倍”适用于小数、分数、整数。

(3)交流汇报。

【设计意图】“一个数的因数和倍数”与学生已学过的乘法算式中的“因数”以及“倍”的概念既有联系又有区别,学生比较容易混淆,这也是学习一个数的“因数”和“倍数”意义的难点。通过观察、对比、交流,引导学生发现一个数的“因数”和乘法算式中的“因数”的区别以及一个数的“倍数”与“倍”的区别。

(二)找一个数的因数

教学例2:

1.探究找18的因数的方法。

(1)18的因数有哪些?你是怎么找的?

(2)交流方法。

预设:方法一:根据因数和倍数的意义,通过除法算式找18的因数。

因为18÷1=18,所以1和18是18的因数。

因为18÷2=9,所以2和9是18的因数。

因为18÷3=6,所以3和6是18的因数。

方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。

因为1×18=18,所以1和18是18的因数。

因为2×9=18,所以2和9是18的因数。

因为3×6=18,所以3和6是18的因数。

2.明确18的因数的表示方法。

(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?

(2)交流方法。

预设:列举法,18的因数有:1,2,3,6,9,18。

图示法(如下图所示)。

3.练习找一个数的因数。

(1)你能找出30的因数有哪些吗?36的因数呢?

(2)怎样找才能不遗漏、不重复地找出一个数的所有因数?

【设计意图】让学生通过自主探索、交流,获得找一个数的因数的不同方法,在练习中体会“一对一对”有序地找一个数的因数,避免遗漏或重复。初步感受一个数的因数的个数是有限的,以及“最大因数、最小因数”的特征。

(三)找一个数的倍数

教学例3:

1.探究找2的倍数的方法。

(1)2的倍数有哪些?你是怎么找的?

(2)交流方法。

预设:方法一:利用除法算式找2的倍数。

因为2÷2=1,所以2是2的倍数。

因为4÷2=2,所以4是2的倍数。

因为6÷2=3,所以6是2的倍数。……

方法二:利用乘法算式找2的倍数。

因为2×1=2,所以2是2的倍数。

因为2×2=4,所以4是2的倍数。

因为2×3=6,所以6是2的倍数。……

(3)2的倍数能写完吗?你能继续找吗?写不完怎么办?

(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、图示法)

2.练习找一个数的倍数。

你能找出3的倍数有哪些吗?5的倍数呢?

【设计意图】在理解“倍数”的基础上,让学生进一步体会有序思考的必要性。初步感受一个数的倍数的个数是无限的,以及“最小倍数”的特征。

(四)一个数的因数与倍数的特征

1.从前面找因数和倍数的过程中,你有什么发现?

2.讨论交流。

3.归纳总结。

预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;
一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。

(五)巩固练习

1.课件出示教材第7页练习二第1题。

(1)想一想,怎样找不会遗漏、不会重复?

(2)哪些数既是36的因数,也是60的因数?

【设计意图】通过练习,让学生再次体会“1是所有非零自然数的因数”“一个数最大的因数是它本身”和“一个数的因数的个数是有限的”。同时,渗透两个数的“公因数”的意义。

2.课件出示教材第7页练习二第3题。

(1)学生独立完成,交流答案。

(2)思考:5的倍数有什么特征?

【设计意图】渗透5的倍数的特征。

3.课件出示教材第7页练习二第5题。

(1)学生独立完成,交流答案。

(2)你能改正错误的说法吗?

(六)全课总结,交流收获

这节课我们学了哪些知识?你有什么收获?

因数教学设计 第16篇

教学内容:教科书12——16页的学习内容

教学目标

通过对比学习,加深因数和倍数意义的理解,通过在意义、找的方法以及计数等几个方面对比,进一步理清因数与倍数的区别于联系,准确把握因数与倍数。

教学重点:因数与倍数的对比。

教学难点:用准确语言表达。

教学准备:实物投影

教学活动

(一 )基础训练

【口答】

下面的说法对码?如果不对,请改正。

(1)32÷4=8,所以42是倍数,4是因数

(2)12的因数只有2、3、4、6、12

(3)1是1,2,3,…的因数

(4)60的最大因数和最小倍数都是60

(5)5一共有10000个倍数

(6)一个数的倍数一定大于它的因数

【解答题】

因数能否数完?倍数呢?

(二) 新知学习

【典型例题】

1.分别找出16的因数和倍数

2.仔细想想,找出16的所有因数和倍数的感受相同码?

2.填表。

不同方面联系

意义寻找方法能否找完有无最大与最小表示

因数

倍数

(三) 巩固练习(10题)

【基础练习】

1.选择正确答案的序号填在括号内。

(1)下面算式中能表示63是7的倍数的算式是()

① 7×9=63 ② 63÷8=7……7 ③ 63÷21=3

(2)9的因数有( )个

① 2 ② 3③ 4

(3)不能够表示出“倍数”与“因数”关系的算式是()

① 19÷3 = 6……1② 24÷6=4 ③ 17×4=68

【提高练习】

1. 按要求写数

6的倍数(写出5个) 32的所有因数 120的所有因数

2.练一练第7题。

教师可以鼓励学生课后查阅相关资料,把数学学习由课堂引申到课外。

通过本题计算在月球和火星上的体重,激发学生的好奇心,进行保护地球的环保教育

3.填表。

(1)48个同学表演团体操,把队伍的排列情况填写完整。

排数123456789

每排人数4824

每排都是48的因数码?

(2)乘坐碰碰车每人应付8元,你能把表填完整码?

乘坐人数12345……

应付元数816

【拓展练习】

1.填数。

2.五年(1)班同学参加植树活动,要植树24棵,如果要求每行植树的棵树相同,有几种不同的植法?如果要50棵树呢?

向学生简介林可以植树的好处,净化空气,还可以降低噪音,美化环境的功效。

(五)教学效果评价(小测题2—3题)

1.24的因数有哪些?

2.36是哪些数的倍数?

课后反思:

通过引导学生从一个数的倍数的定义出发,推出该数和任意非零自然数之积都是该数的倍数。2的倍数也就是2和任意非零自然数的乘积,学生在列乘法算式时发现这样的算式是列不完的,总结出2的倍数的个数是无限的。进而推倒出:一个数的倍数的个数是无限的。只有最小的倍数,没有最大的倍数。学生亲历了知识的形成过程,既探究了知识,又形成了总结概括的能力。

因数教学设计 第17篇

教学内容:青岛版教材小学数学五年级上册88—91页。

教学目标:

1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。

2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。

教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。

教学难点:探索求一个数因数或倍数的方法。

教具准备:多媒体课件、学生练习题

教学过程:

一、谈话导入。

师:同学们看这是什么?

生:小正方形。

师:想不想知道王老师给大家带来了多少个这样的小正方形?

生:想。

师:多少个?

生:12个。

师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?

生:能。

【设计意图】:以学生熟悉情景引入,激发学生的好奇心。

二、教学因数和倍数的意义

师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?

生:好!

学生汇报:

生1:1×12=12

师:他是怎么摆的?

生:一行摆1个,摆了12行;
也可以一行摆12个,摆1行。

课件出示摆法。

师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)

生2:2×6=12

师:猜一猜他是在怎么摆的?

生:一行摆2个,摆了6行;
也可以一行摆6个,摆2行。

师:这两种情况,我们也算一种。

生3:
3×4=12

师:他又是怎么摆的?

生:一行摆3个,摆了4行;
也可以一行摆4个,摆3行。

师:还有其他摆法吗?

生:没有了。

师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)

2.教学“因数和倍数”的意义。

师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4 的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。

学生汇报:任选一道回答。

生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。

师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。

师:还有一道算式,谁来说一说?

生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。

师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。

师:通过刚才的练习,你有没有发现12的因数一共有哪些? (生边说老师边有序的用课件出示12的所有的因数。)

师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。

3、5、18、20、36

【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。

三、教学寻找因数的方法。

1、找一个数的因数。

师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?

师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?

生:有。

师:老师提个要求:

1)、可以独立完成,也可以同桌交流。

2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。

2、探索交流找一个数的因数的方法。

找一名有代表性的作业板书在黑板上。

师:他找对了吗?

生:没有,漏下了一对。

师:为什么会漏掉?仅仅是因为粗心吗?

生:不是,他没有按照一定的顺序找!

师:那么要找到36所有的因数关键是什么?

生:有序。

师生共同边说边有序的把36的所有的因数板书出来。

师:还有问题吗?

生:没有了。

生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了?

生:再接着找就重复了。

师:那么找到什么时候就不找了?

生:找到重复了,就不在往下找了。

师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。

师:有失误的学生对自己的错误进行调整。

3、巩固练习。

找出下面各数的因数。

4、寻找一个数的因数的特点。

【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。

四、教学寻找倍数的方法。

1、找一个数的倍数。

师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?

生:能!

师:试试看,找个小的可以吗?

生:行!

师:找一下3的倍数。30秒时间,把答案写在练习纸上。

??

师:有什么问题吗?

生:老师,写不完。

师:为什么写不完?

生:有很多个!

师:那怎么才能全都表示出来呢?

生:可以加省略号。

师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?

师:谁能总结一下你是怎样找到的?

生:从小到大依次乘自然数。

师:你真会思考!

课件出示3的倍数。

2、找5、7的倍数。

师:我们再来练习找一下5的倍数。

生:5的倍数有:5、10、15、20、25??

生:7的倍数有:7、14、21、28、35??

师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?

生:能!

学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。

五、知识拓展

认识“完美数”。

师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。

小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。

【设计意图】丰富学生的知识,陶冶学生的情操。

教学反思:

找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。

因数教学设计 第18篇

教学目的:

1、使学生掌握0和任何数相乘都得0。

2、使学生掌握第一个因数中间有0的乘法的计算方法。

教学过程:

一、故事导入

1、幻灯放映故事:王母娘娘叫七个仙女到蟠桃园去摘仙桃回来准备祝寿,仙女们到蟠桃园去只看见孙悟空在吃蟠桃,树上一个蟠桃也没有了,仙女们回来禀报王母娘娘。

2、师谈话:这七个仙女究竟摘到了多少个仙桃呢?这就是我们今天要学习的有关0的乘法,板书课题。

二、探究体验

1、教学例5。

(1)要知道刚才仙女们一共摘回多少个苹果,用加法怎样列式?学生回答后,教师板书:0+0+0+0+0+0+0=0

(2)用乘法怎样算?想一想是求几个几相加?

(3)学生回答后,教师板书:0×7=0 7×0=0

2、想一想:0×3= 9×0= 0×0=

(1)指名说一说算式表示的意义,然后说出结果。

(2)生观察归纳小结:0和任何数相乘都得0。

(3)开火车口答p83页做一做。

3、教学例6

(1)出示情景图,生观察思考:从图上你看到了什么?

(2)生汇报交流,找出图中信息并提出问题,师板书。

(3)指名说一说怎样列式计算?

(4)指名板演,试列竖式计算,余生齐练。

(5)集体汇报交流,订正。

(6)你还能怎样计算?学生讨论后汇报交流。

三、实践应用

1、完成p84页“做一做”。

2、完成练习五中的第1题。

(1)让学生独立用竖式计算,教师进行个别辅导。

(2)集体订正,指名让一两个学生说说是怎样计算的。

四、全课总结

1、通过今天的学习,你学到了什么新的知识?

2、师总结。

教后反思:

因数教学设计 第19篇

教学内容:

人教版小学数学五年级下册第13~16页。

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:

理解因数和倍数的含义;
自主探索并总结找一个数的因数和倍数的方法。

教学难点:

自主探索并总结找一个数的因数和倍数的方法;
归纳一个数的因数的特点。

教学具准备:

学号牌数字卡片(也可让学生按要求自己准备)。

教法学法:

谈话法、比较法、归纳法。

快乐学习、大胆言问、不怕出错!

课前安排学号:1~40号

课前故事:

说明道理:

学习最重要的是快乐,要掌握学习的方法。

教学过程:

复习

1、4×0.5=2,所以4和0.5都是2的因数,2是4和0.5的倍数。这句话对吗?

2、我们在因数与倍数的学习中,只讨论什么数?

3、8÷2=4,所以8是倍数,4是因数。这句话对吗?

今天,我和大家一道来继续共同探讨“因数与倍数”

合作交流、共探新知

探究找一个数的因数的方法(谈话法、比较法、归纳法)

请认为自己是18的因数的同学带着号码牌上台来。

a、学生上台――找对子,击掌―――。完后提示:老师觉得有点乱,有没有什么方法可以让这些找因数的方法有序些?

b、学生再次依照1x18,2x9,3x6的顺序一个个讲出乘法算式。接着追问:那18的因数就有???从1开始做手势:(1,18,2,9,3,6)有没有遗漏的呢?为了让人家看得更明白,我们从小到大排一下,好不好?

学生预设:有的学生可能会说还有6x3,9x2,18x1等,出现这种情况时可以冷一下,让学生想一想这样写的话会出现什么情况,最后让学生明白一个数的因数是不能重复的。

c、可是老师觉得这样子写又有点乱,有没有更好的办法让人看得更清楚些,让这些数字的有序地排列?

d、介绍写一个数因数的方法

可以用一串数字表示;
也可以用集合圈的方法表示。

说一说:

18的因数共有几个?

它最小的因数是几?

最大的因数是几?

做一做(在做这些练习时应放手让学生去做,相信学生的知识迁移与消化新知的能力)

a、30的因数有哪些,你是怎么想的?

b、36的因数有几个?你是怎么想的?为什么6x6=36,这里只写一个因数?

c、对比18、30、36的因数,分别让学生说说每个数最小的因数是几?最大的因数是几?各有几个因数?

d、让学生讨论:你从中发现了“一个数的因数”有什么相同的地方吗?

学生总结:

板书:

一个数最小的因数是1;

最大的因数是它本身;

因数的个数是有限的。

轻松一下:

我们来了解一点小知识:完全数,什么叫完全数呢?就是一个数所有的因数中,把除了本身以外的因数加起来,所得的和恰好是这个数本身,那这样的数我们就叫它完全数,也叫完美数,比如6~~(学生读课本14页完全数的相关知识)

b、探究找一个数的倍数的方法(谈话法、比较法、归纳法)

因为有了前面探究找一个数因数的方法,在这一环节更可大胆让学生自己去想,去说,去发现,去归纳。教师只要适当做点组织和引导工作就行。

过渡:大家都很棒!这么快就找出了一个数的因数并总结好了它的规律,现在杨老师想放开手来让大家自己来学习下面的知识:找一个数的倍数。

a、2的倍数有哪些?你是怎么想的?从1开始做手势:1x2=2,2x2=4,2x3=6,一倍一倍地往上递加。

发现:这样子写下去,写得完吗?写不完,我们可以用一个什么号来表示?这个省略号就表示像这样子的数还有多少个?

b、那5的倍数有哪些?按从小到大的顺序至少写出5个来,看谁写得又快又好

c、对比“一个数的因数”的规律,学生自由讨论:一个数的倍数有什么规律呢?

(到这一环节就无需再提问了,要相信学生能够在类比中找到学习的方法)

学生总结:

板书:

一个数最小的倍数是它本身;

没有最大的倍数;

倍数的个数是无限的。

(哦,大家这么聪明啊,不用老师教都会了,看来你们真的是太棒了,这也说明学习要学得轻松就一定要掌握~~方法!)

c、看样子大家都满怀信心了,那老师就用黑板上的两个例题来考考大家,看大家的观察能力是不是真的好厉害。

指着板书中的18的因数与2的倍数提问:

你能从中找出既是18的因数又是2的倍数的数吗?(计时开始:10,9,8,~~~)

学生完成后表扬:哇,好厉害!

三、深化练习,巩固新知

1、做练习二的第3题

在题中出示的数字里分别找出8的倍数和9的倍数

注意“公倍数”概念的初步渗透。

做练习二的第6题

四、通过这堂课的学习,你有什么收获?

五、布置作业:

六、结束全课:

请学号是2的倍数的同学起立,你们先离场,

不是2的倍数的同学后离场。

七、板书设计:

18=1 ×18

18=2 × 9

18=3 × 6

有序 不重复不遗漏

18的因数有:1、2、3、6、9、18。

因 数 和 倍 数

一个数的最小因数是1,最大因数是它本身。

因数的个数是有限的。

2的倍数

2,4,6,……

一个数的最小倍数是它本身,没有最大倍数。

倍数的个数是无限的。

因数教学设计 第20篇

教学目标:

1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;
学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;
了解一个数的因数、倍数的特点。

2.使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

教学重点:

认识因数和倍数。

教学难点:

求一个数的因数、倍数的方法。

教学准备:

小黑板、准备12个同样大的正方形学具。

教学过程:

一、操作引入,认识意义

1.操作交流。

引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。

学生操作,用算式表示,教师巡视。

交流:你有哪些拼法?请你说一说,并交流你表示的算式。

结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。

2.认识意义。

(1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的因数;
反过来,12是4的倍数,也是3的倍数。

(2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。

(3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是O的自然数。

因数教学设计 第21篇

一、教材分析:

整除概念是贯穿这部分教材的一条主线。签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c直接引出因数和倍数的概念。

二、设计思想:

这节课教学倍数和因数的认识,学习找一个自然数的倍数。教材通过用12个同样大小的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,直观感知倍数和因数的关系。在此基础上再依据算式具体说明倍数和因数的含义,利用已有的乘除法知识,自主探索并总结找一个数的倍数的方法。

三、教学目标:

1、通过操作活动得出相应的乘法算式,帮助学生理解倍数和因数的意义;
探索求—个数的倍数的方法,发现一个数的倍数的特征。

2、在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。能在1-100的自然数中找出10以内某个数的所有倍数。

3、通过倍数和因数之间的互相依存关系使学生感受数学知识的内在联系,

四、教学重点:

理解倍数和因数的意义和掌握求一个数的倍数的方法。

五、教学难点:

倍数与因数关系的理解。

六、学情分析:

因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。

教学过程:

一、创设情境,引入新课。

1.同学们,你们已经是五年级的学生了。还记得刚入学时你们学得那些数吗?师准备一些豆子让学生数。师介绍自然数及非零自然数。

2.师:我们知道人和人之间存在着这样、那样的关系,其实,数和数之间也存在着多种关系,这一节课,我们一起来探究两数之间的一种关系。

二、认识倍数和因数

1.操作活动:

师:一起看大屏幕,老师这儿有12个大小相同的正方形,如果请你把这12个正方形摆成一个长方形,会摆吗?能不能用一个乘法算式来表示,试试看。

2.学生汇报算式,然后思考是怎样摆的。

师:12个同样大小的正方形能摆出3种不同的长方形,并能写出3个乘法算式,千万别小看这些乘法算式,今天我们研究的内容就在这里。

3.认识倍数和因数。

师:以第一道乘法算式为例,4×3=12,数学上我们就说:12是4的倍数,12也是(3的倍数)

师:大家很会联想,反过来说,4是12的因数,同样,3也是(12的因数)。(课件出示这四句话)

师:这就是我们今天研究的内容(板书课题)

师:仔细观察这个算式,齐读一下。

师:这儿还有两道乘法算式,选你喜欢的一个,说一说谁是谁的因数?谁是谁的倍数吗?

师:为了研究方便,我们在说倍数和因数时,所说的数一般指不是0的自然数。

师:现在你能写一个算式,找一找其中的倍数和因数吗?(同桌互相交流)

师:屏幕上也有几个算式,你能不能说一说其中谁是谁的倍数,谁是谁的因数呢?

(重点是最后一个算式18÷3=6)

生:18是3的倍数,也是6的倍数,3是18的因数,6也是18的因数。

师:看来,我们不仅可以用乘法算式,同样也可以用除法算式来找一个数的因数和倍数。

三、探索找一个数的倍数的的方法

1.找一个数倍数的方法

师:在刚才的学习中我发现12是3的倍数,18也是3的倍数,那3的倍数只有12和18吗?(不是的)

师:你能把3的倍数写出来吗,给你们1分钟的时间,开始。

师:我们一起来写3的倍数,在写一个数的倍数时,一般可以从小到大写前面5个,后面用省略号表示。

师:现在你会找一个数的倍数了吗?(会了)

师:写出2的倍数行不行?(行)5的倍数呢?(行)。

2.发现一个数的倍数的特征

师:刚才我们分别找了3、2、5的倍数,下面请同学们观察3、2、5的倍数,你能发现这些数的倍数有什么共同的特征吗?和你的同桌交流一下

生:最小的和它一样

师:一个数最小的倍数就是它“本身”。(板书:最小本身)

师:最大呢?(生:找不到最大的)

师:也就是说一个数没有最大的倍数。(板书:最大没有)

生:一个数的倍数有无数个

师:无数个我们也可以说是“无限”(板书:个数无限)

四:拓展练习

1.

(1)一共有多少个鸡蛋?

(2)说一说谁是谁的倍数.

2.判断题.

(1)36÷9=4,36是倍数,9是因数。

(2)12的倍数只有24、36、48.

(3)57是3的倍数。

(4)1是1、2、3......的倍数。

3.下面的数哪些是4的倍数,哪些是6的倍数,哪些既是4的倍数,又是6的倍数?

42121869203048

4.写出100以内8的全部倍数.

五:全课小结

这节课你学习了什么知识?有什么收获?

因数教学设计 第22篇

教材分析:

这部分教材首先以例题的形式介绍因数和倍数的概念,然后在例1和例2中分别介绍了求一个数的因数和倍数的方法,引导学生从本质上理解概念,避免死记硬背,向学生渗透从具体到一般的抽象归纳的思想方法。

了解学生:

学生已经学习了四年的数学,有了四年整数知识的基础,本课利用实物图引出乘法算式,然后引出因数和倍数的含义,培养了学生的抽象概括能力。

教学目标:

1、知识技能:(1)理解和掌握因数、倍数的概念,认识它们之间的联系和区别。(2)学会求一个数的因数或倍数的方法,能够熟练地求出一个数的因数或倍数。(3)知道一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

2、过程方法:经历因数和倍数的认识以及求一个数的因数或倍数的过程,体验类推、列举和归纳总结等学习方法。

3、情感态度:在学习活动中,感受数学知识之间的内在联系,体验发现知识的乐趣。

教学重点:学会求一个数的因数或倍数的方法。

教学难点:理解和掌握因数和倍数的概念。

教学准备:课件、作业纸。

教学过程:

一、创设情境——找朋友

1、唱一唱:你们听过“找朋友”这首歌吗?谁愿意大声的唱给大家听?(一名学生唱,师评价:老师很喜欢你的声音,你敢于表现自己,老师很愿意和你成为好朋友)

2、说一说:谁能具体的说一说“谁是谁的好朋友”?(鼓励:老师希望能听到更多人的声音)

学生完整叙述:“××是 李老师的朋友,李老师是××的朋友”。

3、引入新课:同学们说的很好,那能不能说老师是朋友,××是朋友?看来,朋友是相互依存的,一个人不会是朋友。今天我们就来认识数学中的一对朋友“因数和倍数”(板书课题)

二、探究新知

1、提出问题:现在有12名同学参加训练,要排成整齐的队伍,可以怎样排?用一个简单的乘法算式表示出排列的方法。

学生可能得到:每排6人,排成2排,2×6=12;

每排4人,排成3排,4×3=12;

每排12人,排成1排,1×12=12。

课件出示相应的图和算式。

2、揭示概念:以2×6=12为例。

边说边板书:( )是12的因数,( )是12的因数;

12是( )的倍数,12是( )的倍数。

学生同桌互相说,指名两名同学说。(评价:这么短的时间内,同学们就能准确、完整的表述它们之间的因倍关系,真了不起。)

突出强调:能不能说12是倍数,2是因数?(学生回答,揭示并板书:相互依存)

3、强化概念:另外两道乘法算式,你也能像这样准确地写出它们之间的关系吗?分组比赛,在作业纸上完成,看哪个组能完全做对。

学生在作业纸上完成,同时课件出示:(指名两名学生在白板上利用普通笔标注答案)

因数教学设计 第23篇

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:

掌握找一个数的因数和倍数的方法。

教学难点:

能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

齐读p12的注意。

二、新授:

(一)找因数:

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有:
1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;
用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有:
1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

看来,任何一个数的因数,最小的一定是( ),而最大的一定是( )。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?最大的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报 3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数 3的倍数 5的倍数

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)

三、课堂小结:

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业:

完成练习二1~4题

因数教学设计 第24篇

【教学内容】

人教版数学五年级下册P12一14,练习二。

【教学过程】

一、操作空间,初步感知。

1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

2.学生动手操作,并与同桌交流摆法。

3.请用算式表达你的摆法。

汇报:1x12=12,2x6=12,3x4=12。

【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

二、探索空间,理解新知。

1.理解因数和倍数。

(1)观察3x4=12,你能从数学的角度说说它们之间的关系吗?师根据学生的表达完成以下板书:3是12的因数12是3的倍数4是12的因数12是4的倍数3和4是12的因数12是3和4的倍数

(2)用因数和倍数说说算式1x12=12,2x6=12的关系。

(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。

2.求一个数的因数。

(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。学生汇报

师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

出示要求:

①可独立完成,也可同桌合作。

②可借助刚才找出12的所有因数的方法。

③写出36的所有因数。

④想一想,怎样找才能保证既不重复,又不遗漏。教师巡视,展示学生几种答案。

生1:1,2,3,4,9,12,36。

生2:1,36,2,18,3,12,4,9,6。

生3:1,4,2,36,9,3,6,12,18。

(2)比较喜欢哪一种答案?为什么?

用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

师:有序思考更能准确找出一个数的所有因数。完成板书:描述式、集合式。

(3)30的因数有哪些?

【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

3.求一个数的倍数。

(1)3的倍数有:——,怎样

有序地找,有多少个?

找一个数的倍数,用1,2,3,4?分别乘这个数。(2)练一练:6的倍数有:,40以内6的倍数有:一o

【评析】

由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

4.发现规律。

观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现?根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;
一个数的最小倍数是它本身,没有最大的倍数。

【评析】

通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。三、归纳空间,内化新知。

师生共同总结:

(1)因数和倍数是相互的,不能单独存在。

(2)找一个数的因数和倍数,应有序思考。

四、拓展空间,应用新知。

1、15的因数有:——,15的倍数有:——。

2.判断。

(1)6是因数,24是倍数。()

(2)3.6÷4=0.9,所以3.6是4的`因数。()

(3)1是1,2,3,4?的因数。()

(4)一个数的最小倍数是21,这个数的因数有1,5,25。()

3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

4、举座位号起立游戏。

(1)5的倍数。

(2)48的因数。

(3)既是9的倍数,又是36的因数。

(4)怎样说一句话让还坐着的同学全部起立。

【评析】

本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。

【反思】

本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点:一、留足空间,让探索有质量。

留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思

维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。二、适度引导,让探索有方向。

引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。

在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。

整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。

因数教学设计 第25篇

【教学内容】

人教版数学五年级下册P12一14,练习二。

【教学过程】

一、操作空间,初步感知。

1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。

2.学生动手操作,并与同桌交流摆法。

3.请用算式表达你的摆法。

汇报:1×12=12,2×6=12,3×4=12。

【评析】通过让学生动手操作、想象、表达等环节,既为新知探索提供材料,又孕育求一个数的因数的思考方法。

二、探索空间,理解新知。

1.理解因数和倍数。

(1)观察3×4=12,你能从数学的角度说说它们之间的关系吗? 师根据学生的表达完成以下板书:
3是12的因数 12是3的倍数 4是12的因数 12是4的倍数 3和4是12的因数 12是3和4的倍数

(2)用因数和倍数说说算式1×12=12,2×6=12的关系。

(3)观察因数和倍数的相互关系。揭示:研究因数和倍数时,所指的数是整数(一般不包括O)。

2.求一个数的因数。

(1)出示2,5,12,15,36。从这些数中找一找谁是谁的因数。

学生汇报。

师:2和12是36的因数,找1个、2个不难,难就难在把36所有的因数全部找出来,请同学们找出36的所有因数。

出示要求:

①可独立完成,也可同桌合作。

②可借助刚才找出12的所有因数的方法。

③写出36的所有因数。

④想一想,怎样找才能保证既不重复,又不遗漏。

教师巡视,展示学生几种答案。

生1:1,2,3,4,9,12,36。

生2:1,36,2,18,3,12,4,9,6。

生3:1,4,2,36,9,3,6,12,18。

(2)比较喜欢哪一种答案?为什么?

用什么方法找既不重复又不遗漏。(按顺序一对一对找,一直找到两个因数相差很小或相等为止)

师:有序思考更能准确找出一个数的所有因数。

完成板书:描述式、集合式。

(3)30的因数有哪些?

【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。通过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。

3.求一个数的倍数。

(1)3的倍数有:——,怎样

有序地找,有多少个?

找一个数的倍数,用1,2,3,4?分别乘这个数。

(2)练一练:6的倍数有:
,40以内6的倍数有:一o

【评析】

由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。

4.发现规律。

观察上面几个数的因数和倍数的例子,你对它们的最大数和最小数有什么发现? 根据学生汇报,归纳:一个数的最小因数是I,最大因数是它本身;
一个数的最小倍数是它本身,没有最大的倍数。

【评析】

通过观察板书上几个数的因数和倍数,放手让学生发现规律,既突出了学生的主体地位,又培养了学生观察、归纳的能力。

三、归纳空间,内化新知。

师生共同总结:

(1)因数和倍数是相互的,不能单独存在。

(2)找一个数的因数和倍数,应有序思考。

四、拓展空间,应用新知。

1、15的因数有:_________,15的倍数有:_________。

2.判断。

(1)6是因数,24是倍数。( )

(2)3.6÷4=0.9,所以3.6是4的因数。

( )

(3)1是1,2,3,4?的因数。

( )

(4)一个数的最小倍数是21,这个数的因数有1,5,25。( )

3、选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话。

4、举座位号起立游戏。

(1)5的倍数。

(2)48的因数。

(3)既是9的倍数,又是36的因数。

(4)怎样说一句话让还坐着的同学全部起立。

【评析】

本环节的前3题侧重于巩固新知,后2题侧重于发展思维。通过“说一句话”和“起立游戏”,展现了学生的个性思维,体现了知识的应用价值。

反思

本课教学设计重在让学生通过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点:
一、留足空间,让探索有质量。

留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一,把教材中的飞机图改为拼长方形,让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现提供了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思

维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:通过观察12,36,30的因数和3,6的倍数,你发现了什么?由于提供了丰富的观察对象,保证了观察的目的性。第四:让学生“选用4,6,8,24,1,5中的一些数字,用今天学习的知识说一句话”。不拘形式的说话空间,不仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。

二、适度引导,让探索有方向。

引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。

在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。

整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断形成、知识不断建构的过程。

推荐访问:因数 教学设计 因数教学设计2 因数教学设计(合集25篇) 因数的教学设计

热门文章

2024年浅谈纪检监察工作面临困难及对策

民主政治是实施权力监督的环境条件,而民主政治的精髓就是通过有效的权力配置实现以权力制约权力。构建社会主义和谐社会,建立政治文明国家,就要从严治党,就要加强党内监督,尤其要加强对党的各级组织、党的领导干

政治机关建设方面存在的不足和改进(4篇)

政治机关建设方面存在的不足和改进

2024公安民警职务晋升(3篇)

公安民警职务晋升

2024落实第一议题制度会议记录(5篇)

落实第一议题制度会议记录

2024年度关于加强公安机关网络舆情风险防范工作部分思考

当前,随着互联网的广泛普及和信息技术的快速发展,各种社会思潮、意识形态、价值观念在网络上交织碰撞,所形成的“网络话语”逐渐成为重要的舆情力量,使当前的社会舆论环境发生重大而深刻的变化。以“两微一端”为

基督教为亡者祈祷经文6篇【完整版】

基督教为亡者祈祷经文(诗班唱诗歌,等候开会)主持人:基督徒()荣归天家追思礼拜现在开始。主持人:全体肃立、默哀(信徒祷告不超一分钟为好)……默哀毕。主持人:

小学思政课实施方案小学思政课实施方案(完整)

随着国家对素质教育要求的不断加强,小学思政课在课程中的地位也越来越重要,是实现全面育人的重要组成部分。小学思政课是指以道德素养、宪法法律、人生观价值观、民族精神、科学技术、文化艺术、体育健康等为核心,

那些借调人到底怎么留下来?(2024年)

上级单位之所以要“借调”,恰恰说明这个单位缺人,特别是缺能做事、会做事的人,这就意味着有打破“借而不调”僵局的希望,从而名正言顺一直留下来。下面我结合身边朋友的真实故事说说怎么“调”。方案一:保持耐心

共青团xx市委“喜迎二十大、永远跟党走、奋进新征程”主题教育实践活动启动仪式主持词(全文完整)

文章详情共青团xx市委喜迎二十大、永远跟党走、奋进新征程主题教育实践活动启动仪式主持词尊敬的领导、全体青年朋友们:在中国共产主义青年团成立100周年之际,共青团中央决定,围绕迎接和学习宣传贯彻党的二十

2023最新烈士陵园闹鬼鬼把孩子追到烈士陵园(五篇)

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我

意识形态方面方面存在问题和不足(4篇)

意识形态方面方面存在问题和不足

学校二十大安保维稳工作实施方案(完整文档)

为切实做好党的二十大期间我校维稳安保工作,及时高效贯彻执行中央领导指示批示精神和省市委统一部署要求,各单位要始终站在讲政治、讲大局的高度,凝聚共识、主动担当、攻坚克难,狠抓校园维稳各项工作措施的落实,