当前位置: 智迪文档网 > 范文大全 > 公文范文 >

2023年分数基本设计教学设计必备18篇

| 来源:网友投稿

分数的基本设计教学设计第1篇教学目标:1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。2、理解和掌握分数的基本性质。3、培养学生观察、理解。4、较好实现知识教育与思想教育的有效结合。教下面是小编为大家整理的分数基本设计教学设计必备18篇,供大家参考。

分数基本设计教学设计必备18篇

分数的基本设计教学设计 第1篇

教学目标 :

1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2、理解和掌握分数的基本性质。

3、培养学生观察、理解。

4、较好实现知识教育与思想教育的有效结合。

教学重点 :理解和掌握分数的基本性质。

教学难点 :能熟练、灵活地运用分数的基本性质。

教具准备 :“分数基本性质”课件,正方形纸片,彩色粉笔。

教学过程:

一、巧设伏笔、导入新课。

1、出示课件:120÷30的商是多少?

被除数和除都扩大3倍,商是多少?

被除数和除数都缩小10倍呢?(出示后学生回答,课件显示答案)

2、在下面□里填上合适的.数。

1÷2=(1×5)÷(2×□)

=(1÷□)÷(2÷4)

①想一想,你是根据什么填上面的数的?(生口答)

(课件:商不变的性质)

②商不变的性质是什么?(生口答)

③除法与分数之间有什么关系?

生答,师板书:被除数÷除数=被除数/除数

二、讨论探究,学习新知。

1、课件出示:1÷2= (怎么写)

①1/2与( )相等?你能想出哪些数?有办法怎么让它们相等吗?

让生合作探讨。

②生出示答案:1/2=2/4=4/8……

有选择填入上数。

2、引导学生证明它们相等。

①出课件:出示1个长方体,平均分成2份,得1/2,平均分成4份,得2/4……。

(课件演示)

上述演示让学生感知后,问你发现了什么?(生讨论)

②再逆向思考,观察板书和课件。

问你又发现了什么?(生讨论)

得到:(板书)分数的分子和分母同时乘上或者除以相同的数,分数的大小不变。

3、验证、补充、强调

①出示2/5=2×2/5=4/5,对吗?(验证分数的基本性质),为什么?强调“同时”(在黑板板书上用彩笔勾划强调)。

②出示3/4=3×3/4×4=9/16,对吗?为什么?强调“相同的数”。

③右边列式行吗?为什么?3/4=3×0/4×0=?补充:(0除外)板书,并出示课件补充。

④归纳出上述板书为“分数的基本性质”(课题)。

4、信息反馈、纠正、巩固。

①判断(出示课件)

A、分数的分子,分母都乘上或除以相同的数,分数的大小不变。

B、把15/20的分子缩小5倍,分母也缩小5倍,分数的大小不变。

C、3/4的分子乘上3,分母除以3,分数的大小不变。

D、10/24=10÷2/24÷2=10×3/24×3 ( )

完成后,强调重点,加以巩固。

②完成课本108页例2(学生尝试练习)

强调运用了什么性质?课件:“分数的基本性质”醒目强调。

三、实践练习,信息综合

1、练一练

①3/5=3×( )/5×( )=9/( )

②7/8=( )/48

③4÷18=( )/( )=4×5/18×( )=2/( )

2、练习二十二1—3题。

四、课堂总结、整体感知。

(在信息综合后,重点选择性小结,形成整体),这节课我们学习了什么内容?可以应用在什么地方?这与我们学习过的什么性质有联系?

五、发散巩固、自主选择。

想一想:(选择一道你喜欢的题做)

课件:①与1/2相等的分数有多少个?想象一下,把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数。

②9/24和20/32哪能一个数大一些,你能讲出判断的依据吗

分数的基本设计教学设计 第2篇

教学目标:

1、让学生通过经历预测猜想——实验观察——数据处理—合情推理—探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点:

使学生理解分数的基本性质。

教学难点:

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教具准备:

课件,五年级数学学具盒,计算器。

教学过程:

一、呈现材料,发现问题

1、师:老师这儿有一个关于孙悟空在花果山上做美猴王时发生的故事,想听吗?

花果山上的小猴子最喜欢吃美猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均分成四块,分给猴1一块,猴2见了说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块,猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均分成十二块,分给猴3三块。

[评析:创设情境,在学生喜欢的人物分饼的故事中直接导入本课,这样设计可以吸引学生的注意,让学生主动感知,主动去思考,激起学生的探究兴趣,让学生产生想获知结果。内含情感与态度目标:孙悟空,做事认真仔细,机智,勇敢,本事大等。]

师:听到这里,你有什么想法吗?或你有什么话要说吗?

生1:我觉得孙悟空很聪明。

生2:我认为三只小猴分到的饼是一样多的。

生3:我认为猴王这样分很公平,第1只小猴分到了一只饼的1/4,第2只小猴分到了一只饼的2/8,第3只小猴分到了一只饼的3/12,这三只小猴分到的饼是一样多的。

[评析:一般的教师会在这里提出“哪只猴子分得的饼多?”或“你认为猴王这样分公平吗?”这样的问题。但这位教师却提出“听到这里,你有什么想法吗?或你有什么话要说吗?”。这个问题优于前两个问题是因为学生在思考时思路更深、更广。有效的问题有助于摆脱思维的滞涩和定势,促使思维从“前反省状态”进入“后反省状态”,问题的解决带来“顶峰”的体验,从而激励再发现和再创新,有效的问题有时深藏在潜意识或下意识中,“顿悟”由此而生。有效的创设问题可以激发学生创新意识。内含情感与态度目标,体现公平。]

2、师:大家都觉得其实三只小猴分到的饼一样多,那你们有什么方法来证明一下自已的想法,让这三只小猴都心服口服呢?怎么验证?

(1)师引导学生充分利用桌面上学具盒中的学具(其中一条长方形纸片为事先放入,其它都是五年级数学学具盒中原有的),小组合作,共同验证这三个分数的大小?

(2)师:实验做完了吗?结果怎样?哪个小组先来汇报验证的情况?

组1:我们组把24根小棒看作单位“1”,平均分成4份,其中的一份有6根,就是1/4。平均分成8份,其中的二份有6根,就是2/8。平均分成12份,其中的3份也有6根,就是3/12。所以1/4=2/8=3/12。

组2:我们组把24个小立方体看作单位“1”,平均分成4份,其中的一份有6个,就是1/4。平均分成8份,其中的二份有6个,就是2/8。平均分成12份,其中的3份也有6个,就是3/12。所以1/4=2/8=3/12。

组3:我们把一个圆平均分成4份,取其中的一份是1/4,我们把同样大小的圆平均分成8份,取其中的两份是2/8,我们再把同样大小的圆平均分成12份,其中的3份用3/12表示,我们再把圆片的1/4、2/8、3/12叠起来是一样大的,所以1/4=2/8=3/12。(注1/4圆是学具中本来就有的,2/8是用两个1/4圆合在一起,3/12是用2个1/3合在一起)

组4:我们组是这样验证的。我们把同样大小的长方形纸平均分成4份,其中的一份是1/4,取另外一张再平均分成8份,其中的两份是2/8,接着取另外一张继续平均分成12份,其中的3份是3/12,然后也叠在一起,大小一样,所以我组也认为1/4=2/8=3/12。

组5:我组与他们的验证方法都不一样,我们是计算的:1/4=1÷4=0.25;2/8=2÷8=0.25;3/12=3÷8=0.25。三个分数都等于0.25,所以1/4=2/8=3/12。

[评析:书本上的设计是用折纸来验证这三个分数相等,在这里执教者大胆的放大教材,把一系列探究过程放大,把“过程性目标”凸显出来。同时也为学生探究方法的多元化创造了条件,出现了多种验证的方法。还有这样设计把一些知识联系起来,用计算器的目的,是和五年级上学期的一节计算器课联系起来,而且为验证猜想做准备,可以比较分数的大小,节约时间。和单位“1”的概念联系起来,体现出了单位“1”概念中的两层含意。]

3、组织讨论

(1)师:既然三只小猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?(投影出示分饼图)

板书1/4=2/8=3/12

(2)你能从图上找到另一组相等的分数吗?

板书3/4=6/8=9/12

[评析:书本例1为比较3/46/8和9/12的大小。执教者在创设情景时选择的分数是有目地的]

4、引入新课

师:黑板上二组相等的分数有什么共同的特点?学生回答后板书。

生:分数的分子和分母变化了,分数的大小不变。

师:我们今天就来共同研究这个变化的规律。

5、引导猜测

师:你们猜猜看,在这两组相等的分数中,分子和分母发生了怎样的变化,而分数的大小不变。

生1:分子和分母都乘以一个相同的数,分数的大小不变。

生2:分子和分母都除以一个相同的数,分数的大小不变。

生3:分子和分母都加上一个相同的数,分数的大小不变。

生4:分子和分母都减去一个相同的数,分数的大小不变。

师:根据学生回答板书

[评析:这样设计注意了知识背景的丰富性,拓宽了“分数基本性质”的研究背景。在教学中,学生充分观察学习材料,发现问题后,教师引导学生提出猜测。学生的实际猜想可能会出现观点不一,表达方式不同,或者不够完整,甚至是错误的,这都不重要,重要的是它是根据学生已有的知识经验提出的,能够自已提出问题,已经向探索迈出了可喜的一步。教师留给了学生足够的思空间,让学生充分展现心中的疑惑,呈现了四种不同的假说。如此一来,学生不但是进入到了知识的学习过程中,更是进入到了知识的研究过程中。“分数基本性质”的研究背景从知识层面上来看已经拓宽了,从以前的只局限于“分子和分母同时乘(或除以)一个相同的数,分数的大小不变”拓宽到对““分子和分母同时乘(或除以、或加上、或减去)一个相同的数,分数的大小不变”的研究,有利于学生更为充分地经历“性质”形成的过程,全面地理解和认识“分数的基本性质”,同时还为沟通加、减、乘、除四种情况在分数的大小不变过程中的区别和联系奠定了基础。]

二、活动研究,探究规律。

1、引导研究,感知规律

师:猜测是不一定正确的,需要通过验证才能知道猜测是不是有道理,规律是否存在。我们需要对以上的猜测进行验证。你们准备如何进行验证?

生:举一些例子来验证

师:怎样举例验证呢?我们以其中的一个猜测来试试看好吗?我们选哪一个为好?

生:分子和分母都乘以一个相同的数,分数的大小不变。

师:好,我们就选这个,试试看。

学生以小组为单位进行尝试验证,教师作适当指导。

反馈:根据学生回答板书

1/2=0.5

1×2/2×2=2/4=0.5

1×3/2×3=3/6=0.5

师:看了这些小组的举例验证,能说明这个猜测有道理吗?

有什么要补充的吗?

(学生没有答出0除外)

师:谁能写出几个与1/3相等的分数。比一比谁写的多。

生回答,师板书1/3=2/6=3/9……

师:这样写得完吗?

生:不能

师:分子和分母是不是可以乘以所有的数。

生:0要除外。

师:为什么0要除外呢?

生:0不能做除数,也不能做分母。

[评析:学生在巩固知识的过程中得出结论:这样是永远也写不完的。这时,教师适时点拨,将学生的思维引向更深层次,从而自然得出“0除外”的结论。这样形成的记忆是深刻的。]

2、自主研究,理解规律

师:我们已经用举例验证的方法验证了“分数的分子和分母都乘以一个相同的数分数的大小不变是正确的。那么,其它三个猜测是不是也是正确的呢?接下来我们每一个小组选取一个猜想进行验证。

学生自由选择,教师适当进行调配。

师:为了在研究中能够节约时间,我给大家提供了一些材料,你可以借助这些材料进行验证。当然,你有更好的方法也可以用。

学生小组合作进行研究,教师作适当指导。反馈交流

小结

师:看来在分数里,只有分数的分子和分母都乘或都除以相同的数(0除外)分数的大小不变,而分子和分母同时增加或者同时减少相同的数,分数的大小是会变的。这就是我们今天学习的内容。

出示课题:分数的基本性质

师:你们认为性质中哪几个字是关键字。

生:“都”,“相同的数”,“0除外”

生齐读投影上的分数的基本性质

[评析:这样的设计使学生对四个“假说”的验证过程认知比较充分。这不仅为学生准确理解和把握“分数的基本性质”提供了丰富的感性材料,同时,也为学生体验数学学习的过程创造了条件。教师在该环节的处理上出于对学生实际的考虑,安排了两个层次。第一层次选择“分子和分母都乘以一个相同的数,分数的大小不变。”这一猜测进行验证,一是让学生充分体验一次验证的过程,认识到过程中的注意点,二是有利于教师下一步的调控和指导。正是有了这样的引导,学生在第二层次的独立验证活动中,才能够更多地关注数学学习内在的东西,排除了一些不必要的干扰。学生探究的过程比较清晰,对学习方法的体验也比较深刻、到位。由于这样的设计,使整节课的重心从关注知识的传授转移到关注学习方法的指导上。更重要的是这样的设计体现出了猜测——验证——结论的思维模式。]

3、沟通说明,揭示联系。

师:今天我们学习的分数的基本性质与我们以前学过的什么知识很相似。

生:商不变性质

出示商不变性质

师:分数的基本性质与商不变性质有什么相通的地方吗?

生:分数中的分子相当于除法中的被除数,分母相当于除法中的除数,分数值相当于商。

师:我们平时所学的有些知识和知识之间是有联系的。有时候与我们身边的事也是有联系的。

[评析:引导学生沟通分数的基本性质与商不变性质之间的联系,可以使学生体会到知识与知识之间有时是可以联系起来的。这样的设计有效的培养了学生的比较、分析、综合的能力。]

出示动画片断。(注孙悟空有一次因一时大意,被妖怪关在了一个金钵中,金钵能随孙悟空变大而变大,随孙悟空变小而变小,孙悟空出不来。)

师:孙悟空为什么跑不出来,这与我们今天学的知识是不是有点相似。

生:分数的基本性质。

[评析:数学中的概念是比较抽象的,这样的设计可以帮助学生理解和记忆。同时也可以让学生体会到知识与生活中的一些现象是可以联系的。

例如自从一八四五年德国化学家霍夫曼发现苯之后,许多化学家绞尽脑汁要它的分子结构,然而对当时的人类从未想到环状的分子结构的存在,所以化学家们纷纷撞壁而相继放弃。一八六五年某个寒夜,已经研究多年不肯罢手的"化学家库凯里在一整天徒劳无功的探索后,歪在火炉边打盹,意识滑入梦乡,然后,奇怪的事情发生了,他在梦中看见一大堆原子在眼前雀跃,其中有一群原子排成长长的链,在那儿扭动、盘卷,再仔细一看,啊!是一条蛇咬住自己的尾巴,而且得意洋洋地在他面前猛烈旋转!像被闪电击中,库凯里立刻惊醒,领悟到苯的分子结构是前人未曾梦想过的封闭环状,难怪那些持旧有的开放式链状观点来研究的专家通通碰了一鼻子灰。从此,化学研究也因为这个革命性的发现而进入新的里程碑。在那个看见蛇咬尾巴的梦境中,库凯里领悟到苯的环状结构式。

这样设计可以使学生在回答什么是分数的基本性质时,先想到动画,再用语言表达出内容。同时也可以使学生体会到运用这样的思维方式为以后遇到难以解决的问题是可以提供一定的帮助的。内容情感与态度目标:做事或解题时不能粗心大意。]

师:猴王运用什么规律来分饼的?你们会运用今天的知识来解答问题吗?

三、应用性质,解决问题。

1、出示例2

思考:要把1/3和16/24分别化成分母是6而大小不变的分数,分子、分母怎么变化?变化的依据是什么?板书

2、多层练习,巩固深化

(1)书本试一试

游戏(第一关:初露锋芒、第二关:勇往直前、第三关:再接再厉、第四关:大获全胜。每一关都有相应的练习题)

[评析:练习设计层次安排合理、形式多样、由浅入深。采用游戏的形式,抓住学生好胜的心理,在不知不觉中完成了练习,节约了练习的时间。体现了趣味性、生动性、开放性。既巩固了新知,又发展了思维。]

四、课堂总结

师:今天我们学习了分数的基本性质,回忆一下,我们是怎样学的?

生1、我们是用举例的方法学的。

生2、我们是用验证的方法学的。

生3、我们是通过比较发现了规律。

师:是的,这节课我们在学习过程中,通过“猜想”、举例、验证等方式,概括得出了分数的基本性质并且运用这一知识解决了一些问题。

师:我这里还为大家准备了一个故事。(猜想加陈景润的故事)

师:你听了有什么启发吗?课后同学们可以互相讨论一下。

[评析:让学生回忆这节课的学习历程和发现的一些规律,这样做更能体现“过程”。让学生带着问题下课,把对数学研究的兴趣延伸至课外,鼓励学生大胆创新。]

分数的基本设计教学设计 第3篇

教材分析

1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。

2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。

学情分析

学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。

因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。

教学目标

经历探索分数基本性质的过程,理解分数基本性质。

能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

教学重点和难点

理解分数基本性质,能运用分数基本性质转化分数。

教学过程

一、复习导入

二、探究新知

实践操作,探究规律

观察发现:初步概括分数基本性质

括归纳分数基本性质

三、课堂练习

四、课堂小结

出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。1、 讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”

提出问题: 这些分数都相等吗?

观察这组相等的分数,你发现了什么?把你的发现说给同伴听。

分子、分母都乘或除以一个数,这个数可以是0吗?为什么?

1、课本P43的“试一试”

2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4

通过这节课的学习、你学会了那些知识

口答

小组讨论

拿出准备好的圆形纸片,折一折,画一画、涂一涂

小组讨论、交流

小组讨论、交流

做练习,完成后集体交流。

说说,读分数基本性质

复习旧知,为学习新知识作铺垫。

将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。

让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。

引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。

在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。

让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。

对本节课的所学知识的回顾,及所学知识点的总结。

板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。

教学反思:

分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。

在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。

分数的基本设计教学设计 第4篇

江西省赣州市大公路第二小学李毅云

一、教学目标

1、经历探索分数的基本性质的过程,理解分数的基本性质。

2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

二、教材分析

分数的基本性质是约分和通分的基础,而约分、通分又是分数四则计算重要基础,因此,理解分数大小不变规律显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。探索分数大小不变的规律,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。

教学重点:理解掌握分数的基本性质。

教学难点:归纳性质

教学关键:利用分数意义理解性质

教学方法:直观教学法,故事情境激励法

三、教学设想

(一)、创设故事情境,激发学生学习兴趣,并揭示课题。

上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的。而这几个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。

(二)、利用学具,小组合作探究规律。

当激发起学生的好奇心时,让学生四人小组合作利用手中的学具,结合分数的意义来探究其中的规律。在找到规律后让学生想一想,根据分数与除法的关系,以及整数除法中商不变的规律让学生再说说分数的基本性质,来加深学生对分数的基本性质的理解。在学生已经理解了分数的基本性质后,教师又让学生回到故事中去,让学生试想如果还有一只小猴子,它想要四块,猴王该怎样分呢?既达到了练习的目的,又首尾照应,调动学生的积极性。

(三)、设计有层次的练习,以达到巩固新知的目的。

四、教学设计

(一)创设情境,引起学生参与兴趣

1、猴王变戏法(学生模仿复习):

除法式子变形

分数与除法变形

2、教师出示三只可爱的小猴图片,奖励听故事:

有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。

同学们,你知道哪只猴子分得的多吗?(哪只猴子分得的多?让学生发表自己的意见)

3、教师出示三块大小一样的饼,通过师生分饼,观察验收后得出结论:三只猴子分得的饼一样多。聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道有什么规律吗?

(二)探究新知

1、动手操作、形象感知

请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。

2、观察比较、探究规律

(1)通过动手操作,谁能说一说图中阴影部分用分数表示各是几分之几?

(2)你认为它们谁大?请到展示台上一边演示一边讲一讲。

(3)既然这三个分数相等,那么我们可以用什么符号把它们连接起来?

(4)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题。

要求:有序观察认真交流

(5)学生汇报讨论情况。

(6)启发点拨。

A.通过从左到右的观察、比较、分析,你发现了什么?

B.分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?请举例说明。板书:(零除外)

C.你认为这句话中哪些词语比较重要?(都、相同的数、零除外)

(7)把和化成分母是12而大小不变的分数。

A.思考:要把和化成分母是12而大小不变的分数,分子怎么变?变化的依据是什么?

B.让学生讨论后独立解答。

(8)讨论:猴王运用什么规律来分饼的?如果小猴子要4块,猴王怎么分才公平呢?

(9)质疑。让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师质答疑。

(三)随堂练习

1.P109.1.

2.判断对错,并说明理由。

(四)小结

同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会?

五、让学生拿出课前发的分数纸,要求学生看清手中的分数与1/2相等的,报出自己分数后离场,与2/3相等的再离场与3/4相等的。

分数的基本设计教学设计 第5篇

教学目标:

情感态度:培养学生观察、比较、抽象、概括的逻辑思维能力,并且渗透事物间相互联系,发展变化的辩证唯物主义观点。

知识技能:理解分数的基本性质,并且能够灵活应用。

过程方法:动手操作、观察、讨论

教学重、难点:理解并掌握分数的基本性质并灵活应用。

教具准备:自制多媒体课件、图(2组)、拼图画一幅、实物投影仪。

学具准备:拼图12组。

教学设计理念:

《新课标》要求,让学生在动手操作中观察、思考,在生动具体的情境中学习数学,参与知识的发现过程。在教学分数的基本性质时,选择了学生喜闻乐见的游戏形式,在学生人人参与的教学情境中,让学生发现问题——讨论问题——解决问题。力求通过学生动手实践,自主探索和合作交流的学习方式,新知识的教学,训练学生思维,引导学生把所学数学知识应用于实际中。感受数学的价值,本课设计完全从学生发展为本,在教学中大胆的把课堂还给学生,让学生成为课堂真正的主人。

教学过程:

一、 创设情境,激趣导入。

设计意图:让学生在喜闻乐见的游戏情境中,以浓厚的兴趣参与学习,激发学生探索数学问题欲望,并训练学生小组合作学习的方法和习惯。

师:请看这幅拼图漂亮吗?老师这还有三幅漂亮的图片(投影展示)可爱的青蛙,朝气彭勃的太阳,诱人的苹果,用你们灵巧的双手能不能把他们拼出来?请小组合作完成。同学们,准备好了吗?我宣布:拼图比赛现在开始。

请看拼图要求:

1、用所给材料拼成三个完全一样图形。

2、用分数表示阴影部分占整幅图的几分之几,并写出来。

二、合作交流,探究规律。

设计意图:让学生在具体的情境中充分利用现有资源,增强学生的学习兴趣,既有张扬个性的独立思考,又有发挥集体力量的小组合作学习,培养学生敢于探索的精神与大胆尝试的能力,同时让学生选择自己喜欢的方式,既尊重了学生,又激发了学生的学习兴趣,体现了主体性。

(一)拼图,写分数。

(1)教师组织小组活动,并巡视,参与,指导小组活动。学生拼好图后写出分数。

(2)汇报优胜组介绍经验,并展示作品。(体会小组合作的有效性)教师贴图并板书分数。

(二)找分数间的大小关系。

(1)师:请同学们用自己喜欢的方法找一找每组中三个分数的大小关系,学生独立思考后与同桌交流方法。

(2)汇报:每组中三个分数大小相等。

比较方法。(1)看图比较(2)化小数比较(3)利用商不变的性质比较(4)……

(三)探究规律

(1)每组中三个分数看似不同,实质大小相等,它们之间到底有什么联系?小组讨论探究规律。

(2)交流自己的发现。①每组中三个分数平均分的份数不同取的分数也不同?②分子,分母都扩大了2倍(3倍)③……

(3)师:分数的分子和分母怎样变化时,分数的大小才会不变,学生自由发言,教师给予肯定和鼓励。

(4)师结合图依据分数的意义讲解变化规律。

(5)小结分数的基本性质:强调“相同”“同时”组织讨论:“相同的数”可以是哪些数?

(四)对比分数的基本性质和商不变的性质。

学生对比,说出两个性质间的区别与联系。

三、应用。

设计意图:本环节所设计是由易到难,紧扣本课的重难点,练习具有针对性、实用性、开放性。通过变式练习让学生的思维得到训练,激发探究热情,培养创新能力。

1、填空

(1)学生独立思考。(2)交流口答,并说明依据,同时训练学生应用所学知识解决实际问题的能力。

2、比较 和 的大小。

四、游戏"找朋友”。

设计意图:游戏的情境,形式活泼,让学生通过大小相等的分数找到自己的朋友。游戏规则新颖而恰当,既巩固新知又体会到数学与生活的密切联系。

同学们拿出课前老师发给你的纸,纸上所写分数大小相等的同学,你们是“好朋友”。请学生读自己的分数,与他所读分数大小相等的同学举起来确定后手拉手离场。

分数的基本设计教学设计 第6篇

教学目标:

知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;
培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。

过程与方法:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。

教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。

教学难点:自主探究出分数的基本性质

教学准备:PPT课件、每小组准备三个同样大小的圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。

教学流程:

一、故事导入激趣引思

引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。

讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;
将第二块饼平均分成4份,沙和尚吃其中的四分之二;
将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?

生发表见解。

二、自主合作探索规律

1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!

2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:

(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。

(2)思考:在写分数的过程中你们发现了什么规律?

组内商量一下然后开始行动!

3、小组研究教师巡视

4、全班汇报

交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图

板书课题:分数的基本性质打出幻灯

5、反思规律看书对照找出关键词要求重读共同读

6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。

三、自学例题运用规律

过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始

生自学

集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。

四、多层练习巩固深化

1、判断对错并说明理由

2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8

2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数

思考:分数的分母相同,能有什么作用?

3、圈分数游戏圈出与1/2相等的分数

4、对对碰与1/2,2/3,3/4生生组组师生互动

五、课堂小结课堂作业

结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,

作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。

分数的基本设计教学设计 第7篇

教学目标:

1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。

教学重点:

理解分数的基本性质。

教学难点:

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学过程:

一、创设情境,激趣引新,

1、师:故事引入,揭示课题

同学们,你们听说过阿凡提的故事吗?今天老师这里有一个“老爷爷分地”的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)

故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

3、学生猜想后畅所欲言。

4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?

二、探究新知,解决问题

1、动手操作、形象感知

(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?

(2)学生独立操作验证。

方法1、涂、折、画的方法

方法2、计算的方法。

方法3:商不变的性质。

(3)观察,说说你发现了什么?

分数的基本设计教学设计 第8篇

教学目标:

1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

学习目标:

1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数

重点难点:

1、使学生理解分数的基本性质。

2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

过程设计:

一、激情导入

1、导入课题

生读故事。

唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?

师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?

2、明确目标

理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;
并会应用分数的基本性质。

3、预期效果

达到教学目标

二、民主导学

任务一

任务呈现

动手操作验证性质

自主学习

师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求

1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

2、仔细观察三张纸的涂色部份,你们能发现什么?

师:同位分工合作完成。现在开始。

师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

请二至三位同学说一说。

师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?

生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)

下面请同学们把这个式子从左往右地观察,看一下每个分数的"分子分母怎样变化?才得到下一个分数。

生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

请二名同学重复。

师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?

生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

请一至二名同学回答。

师板书:分数的分子分母同时乘相同的数,分数的大小不变。

师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?

请一同学回答,

生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。

师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?

生:分数的分子分母同时除以相同的数,分数的大小不变。(二名学生重复)

师板书:或者除以

师:你能根据刚才总结的规律举一个例子吗?

让三名学生举出例子,师板书。并问:分子分母同时除以了几?

展示交流

师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)

生:不成立,

师:为什么

生:因为0不能作除数,

师:0不能作除数,所以这个式子是错误的。(画叉)

师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)

生:不成立,因为在分数当中分母相当于除数,除数不能为0。

师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话

生:0除外

师板书0除外

师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

生:同时和相同的数

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)

师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

生齐读二遍。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

任务二

任务呈现

课本76页的例2,请一同学读题。

自主学习

生独立完成,完成后和同位的同学说一说你是怎样想的。

展示交流

每题请二名同学回答,(集体订正答案)

检测导结

1、目标练习

76页“做一做”

练习十四的1、2、6、7题

2、结果反馈

生做完后同桌交流,再指名说说结果。

3、反思总结

今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

三、辅助设计

教具课件设计

小黑板正方形纸数块

板书设计

分数的基本性质

练习和作业设计

1、完成课本76页做一做中的1、2题。

生独立完成,师指名回答。

2、完成练习十四中的1、2、5、6、7题。

师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

分数的基本设计教学设计 第9篇

教学目标:

知识与技能:通过教学使学生理解的掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)相同而大小不变的分数,并能应用这一性质解决简单的实际问题。

过程与方法:引导学生在参与观察、比较、猜想、验证等学习活动的过程中,有条理,有根据地思考、探究问题,培养学生的抽象概括能力。

情感、态度和价值观:使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

教学重点:

理解和掌握分数的基本性质。

教学难点:

应用分数的基本性质解决问题。

教学准备:

预习生成单、作业纸、课件

教学课时:

一课时

教学过程:

一、导入新课,揭示课题

1、师:通过昨天的预习,你知道我们今天要学习什么内容?(生:分数的基本性质)

2、师:针对这个内容,同学们做了充分的预习,相信你们一定提出了不同的数学问题,现在请组长带领组员提炼出你们组最想研究的问题。

3、指名学生汇报。

4、师:同学们,不管你们提出什么样的问题,都与分数的基本性质有关,今天我们就带着这些问题走进课堂。

二、检查预习,自主探究

1.出示预习生成单:(师:我们已经预习了这部分内容,请同学们组内交流一下你们的预习成果,形成统一意见准备汇报。)

2.指名上台展示并汇报。(师:哪个组的同学愿意最先上来展示你们的成果?)

3.(学生展示中注意分工汇报,在汇报中要注意学生用比一比的方法证明涂色部分相等,如果有用分数的意义的理解“都是相同纸的一半”或者“分子是分母的一半”理解也要给予肯定,教师应及时提出,照这样一半的理解,提问:你能在写出一个和他们大小一样的分数吗?教师及时的板演,

4.师:其他同学还有补充吗?你们得出这个结论了吗?

三、合作交流,探究新知

1.师:第一张纸涂色部分是这张纸的(学生说二分之一),第二张纸涂色部分是这张的(四分之二),第三张纸涂色部分是这张纸的(八分之四),涂色部分都相同,也就证明这三个分数的大小也(学生说相等),可是,它们的分子分母却不相同,他们有没有一定的变化规律呢?我们通过合作交流来探究这个问题。

2.出示合作要求(课件),指名学生读一读。

3.学生合作交流,探究学习。

4.学生汇报中教师要及时纠正学生的语言要规范,同时,可以让小组回想补充,特别是,跳跃的两个分数的分子和分母之间的变化规律是怎样?

5.指导汇报,总结规律。谁能完整的说一下你们刚才总结出的规律?

6.教师归纳板书:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。

7.请同学们读一读这句话,想一想:还有需要补充的内容吗?(0除外)

8.再读一读,说说这句话中哪个词比较关键。

9.拓展深化,加深理解,完成练习,思考:分数的基本性质与商不变的性质之间的联系。(练习一)这个过程也要看学生的生成在哪,教师及时的给予肯定。

9.教师小结:通过刚才的学习,孩子们的表现特别出彩,老师相信你们接下来的表现会更棒。

四、应用拓展,新知内化

1.出示例2,指名读题,理解题意。

2.师:你觉得解决这道题应该利用什么知识?(生:分数的基本性质)

3.学生独立在练习本上完成,指名板演,集体订正。

4.小结:刚才,我们通过自主学习、小组探究知道了什么是分数的基本性质,下面就应用分数的基本性来解决一些实际问题。

五、当堂检测。

分数的基本设计教学设计 第10篇

今天我说课的内容是《分数的基本性质》。下面我将从“说教学理念、说教材、说教法、说学法、说教学程序、”五个方面来说课。

一、本课的教学理念有:

1、以学生发展为本,着力强化主体意识。

2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。

3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化等数学思想方法。

二、说教材

《分数的基本性质》一课是义务教材六年制数学第十册第四单元的一个内容。这部内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。

根据教材内容和学生的认识知规律,将本课的教学目标拟定如下:

1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;
培养学生观察、比较及动手实践的能力,进一步发展学生的思维。

2、情感、态度:激发学生积极主动的情感状态,养成注意倾听的习惯。

本课的教学重点和难点:理解和掌握分数的基本性质,会运用分数的基本性质。

三、说教法

树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想,因此在教学中,我采用引导自学、合作探索相结合法,让学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。

四、说学法

1、学生在运用分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在折纸上画出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,让尝试中发现,在实践中体验。从而加深学生对分数基本性质的理解。

2、在学习例题的过程中教师先采用启发法,再采用自自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。

五、说教学程序

依据新的教学理念及学生的认知特点,将本课的教学模式制定为:

总之,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。

分数的基本设计教学设计 第11篇

教学目标

1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点

使学生理解分数的基本性质。

教学难点

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学过程

一、故事情景引入

同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?

好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,小红分得多。”

生乙:“我觉得小明分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

二、新授

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

请你们把这三张圆片叠起来,比一比大小,看看怎么样?

生:“三张圆片一样大。”

1.师:“下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

首先,请在第一张圆片上表示出它的1/3;

再在第二张圆片上表示出它的2/6;

然后在第三张圆片上表示出它的3/9。

好了,大家动手分一分。(教师巡视指导)

2.师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

师:“那九分之三又是怎么得到的呢?大家一起说。”

生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。”

(学生说的同时,教师操作,分完后把圆片贴在黑板上。)

3.师:“同学们,观察这些圆的阴影部分,你有什么发现?”

小结:原来三个圆的阴影部分是同样大的。

师:“现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

4.研究分数的基本规律。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

学生发言

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。

5.深入理解分数的基本性质。

师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?

齐读分数的基本性质,并用波浪线表出关键的词。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

三、应用

1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2.学生练习课本例题2,两名学生在黑板上做。

3.学生自己小结方法。

4.按规律写出一组相等的分数。

分数的基本设计教学设计 第12篇

一、教学目标

1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。

2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。

3、激发学生积极主动的情感状态,体验互相合作的乐趣。

二、教学重点

1、理解、掌握分数的基本性质,能正确应用分数的基本性质。

2、自主探究出分数的基本性质。

三、教学准备

课件、正方形的纸

四、教学设计过程

(一)迁移旧知.提出猜想

1、回忆旧知

根据“288÷24=12”填空

28.8÷2.4=

2880÷240=

2.88÷0.24=

0.288÷()=12

被除数÷除数=()

说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想

既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)

2、出示学习提示。

学习提示

A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。

B、验证结束后,把你的验证方法和结论与小组同学交流。

3、汇报交流

指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。

C、总结规律

1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。

2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的大小就不会发生变化。

3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?

如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。

师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)

D教学例2

把2/3和10/24都化为分母为12而大小不变的分数。

学生独立完成,集体订正。

(三)练习升华

1、填空

2、下面算式对吗?如果有错,错在哪里?

3、把相等的分数写在同一个圈里。

4、老师给出一个分数,同学们迅速说出和它相等的分数。

(四)作业

教材59页第9题。

(五)思维拓展

(六)总结延伸

师:这节课你有什么收获?

分数的基本设计教学设计 第13篇

(一)激趣引思、提出要求

同学们,你们听过阿凡提的故事吗?今天老师也带来了一则阿凡提的故事。让我们一一看!谁来读一读?(指名读)你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话呢?

有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!

(二)自主探究,发现规律

1、出示例1的四幅图。

我们先来看一道题目。分别用分数表示每个图里的涂色部分。

(1)谁来说第一个?

全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?

同学们,你们比较比较这几幅图的阴影部分,想想看,你发现了什么呢?也就是说,哪3个分数是相等的呢?

(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?

2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?

那,这些分数是不是相等呢?咱们口说无凭,咱们来做个小实验证明它门是相等的,好不好?

先别急,先来看看有哪些实验要求。

咱们这个实验的目的上一什么?验证什么?

咱们实验的方法有哪些呢?

实验有什么要求?操作有序什么意思呢?要听从小组长的安排

1、实验目的:验证猜想

2、方法:折一折、分一分、画一画、算一算......

3、要求:小组合作,明确分工,操作有序

我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!

学生操作,老师巡视指导。

集体交流结果。

咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。

把你的发现先和同桌交流交流。

生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。

师:还有谁想说说你的发现?

生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。

师:换一组数据来说说自己的发现?

生:由到,分子、分母都被缩小了3倍,它们的大小不变。

师:刚才同学们都说了自己的发现,想想看,要使分数的大小不变分数的分子和分母应该怎样变化就能使分数的大小不变了呢?

师:为什么要0除外?

师:这就是咱们今天学习的“分数的基本性质”(板书课题)

师:谁来说说看,分数的基本性质是什么呢?

生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。

我们一齐读一遍。

师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?除法中商不变的性质你还记得吗?

同学们想想看,这两个性质之间有什么关系呢?

根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。

师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?

师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。

(三)巩固练习,强化记忆

好,那下面咱们就用今天学的知识来做几道题,好不好?

1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。

集体交流。

2、下面我们来填空补缺想理由。(出示练一练第二题)

他们这样填是根据什么?

3、出示练习十一第二题

独立完成,集体订正。

(四)课堂作业,运用知识

练习十一第三题

(五)课堂,认识自己

今天这节课,你学到了什么?

分数的基本设计教学设计 第14篇

教学目标

1、让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。

教学重点使学生理解分数的基本性质。

教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教学过程

一、故事情景引入

同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道?

好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。

同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。

讨论完了请举手。

生甲:“我觉得不公平,小红分得多。”

生乙:“我觉得小明分得多。”

生丙:“我觉得公平,他们三个分得一样多。”

师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。”

二、新授

师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)”

请你们把这三张圆片叠起来,比一比大小,看看怎么样?

生:“三张圆片一样大。”

1、师:
“ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。”

首先,请在第一张圆片上表示出它的1/3;

再在第二张圆片上表示出它的2/6;

然后在第三张圆片上表示出它的3/9。

好了,大家动手分一分。(教师巡视指导)

2、师:“分完了的请举手?

老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大)

下面请哪位同学说一说,你是怎么分的?”

生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。”

生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。”

师:“那九分之三又是怎么得到的呢?大家一起说。”

生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。

(学生说的同时,教师操作,分完后把圆片贴在黑板上。)

3、师:“同学们,观察这些圆的阴影部分,你有什么发现?”

小结:原来三个圆的阴影部分是同样大的。

师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答)

生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。”

师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?”

生甲:“通过图上看起来,这三个分数应该是一样大的。”

生乙:“这三个分数是相等的。”

师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)

4、研究分数的基本规律。

师:“我们仔细观察这一组分数,它的什么变了,什么没变?”

生甲:“三个分数的分子分母都变了,大小没变。”

师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。

第一个分数从左往右看,跟第二个分数比,发生了什么变化?”

生乙:“它的分子分母都同时扩大了两倍。”

师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。

再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)

教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”

学生发言

小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。

5、深入理解分数的基本性质。

师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)

师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?

齐读分数的基本性质,并用波浪线表出关键的词。

生甲:我觉得“零除外”这个词很重要。

生乙:我觉得“同时”“相同”这两个词很重要。

师:想一想为什么要加上“零除外”?不加行不行?

让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。

教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)

三、应用

1、学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。

2、学生练习课本例题2,两名学生在黑板上做。

3、学生自己小结方法。

4、按规律写出一组相等的分数。

分数的基本设计教学设计 第15篇

一、教学目标:

1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。

2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。

3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。

二、教学重点:

理解掌握分数的基本性质,它是约分,通分的依据

三、教学难点:

理解和掌握分数的基本性质,初步建立数学模型。

四、教学准备:

课件、正方形的纸。

五、教学设计过程:

(一)迁移旧知、提出猜想

1、回忆旧知

猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张,谁能猜出另一张是什么?出示:2÷3

你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:

被除数÷除数=

谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:

被除数和除数同时乘或除以相同的数(零除外),商不变。

2、提出猜想:

既然分数与除法的关系这么紧密、除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)

(二)验证猜想,建构新知

A、看图分类

下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。

B、讨论方法

师:你是怎么判断它们相等的?

师:它们相等,用算式可以怎么表示?

1/2=2/4=4/8

C、研究规律

师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?

利用研究卡进行研究。

确定的研究对象

分子和分母同时乘上或者

除以一个相同的数

得到的分数

研究对象与得到的分数相等吗?

相等()不相等()

猜想是否成立?

成立()不成立()

充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)

师:为什么要0除外?

师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)

练习:2/3=()/18、6/21=2/()、3/5=21/()、27/39=()/13

师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的大小不变)

师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)

师:分数的基本性质与商不变性质有什么联系?

D、质疑完善

3/4=3×()/4×()

师:括号中可以填哪些数?

预设:可以填无数个数

师:如果只用一个数来表示,填什么数好?

预设:字母

师:这个字母有什么特殊要求吗?(0除外)

得到一个初级的数学模型。3/4=3×X/4×X(X≠0)

让学生打开课本进行阅读、内化,并想一想还有什么问题吗?

(三)练习升华

1、5/7=()/35、3/4=9/()、3/()=12/20、16/24=()/3

2、把5/6和1/4都化为分母为12而大小不变的分数。

3、把2/3和3/4都化为分子为6而大小不变的分数。

4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?

5、和哪一个分数大,你能讲出判断的依据吗?

(四)总结延伸

师:这节课学了什么?

师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?

A/B=A×X/B×X(X≠0)或A/B=A÷X/B÷X(X≠0)(板书)

六、作业

p87—1、2

板书设计

分数基本性质

分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

A/B=A×X/B×X(X≠0)或A/B=A÷X/B÷X(X≠0)

6÷8

3÷4

12÷16

分数的基本设计教学设计 第16篇

教学目标:

1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。

学习目标:

1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。

2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数

重点难点:

1、使学生理解分数的基本性质。

2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

过程设计:

一、激情导入

1、导入课题

生读故事。

唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?

师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?

2、明确目标

理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;
并会应用分数的基本性质。

3、预期效果

达到教学目标

二、民主导学

任务一

任务呈现

动手操作验证性质

自主学习

师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求

1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。

2、仔细观察三张纸的涂色部份,你们能发现什么?

师:同位分工合作完成。现在开始。

师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?

请二至三位同学说一说。

师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?

生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。

师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)

下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。

生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。

请二名同学重复。

师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?

生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。

请一至二名同学回答。

师板书:分数的分子分母同时乘相同的数,分数的大小不变。

师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?

师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?

请一同学回答,

生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。

师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?

生:分数的分子分母同时除以相同的数,分数的大小不变。

(二名学生重复)

师板书:或者除以

师:你能根据刚才总结的规律举一个例子吗?

让三名学生举出例子,师板书。并问:分子分母同时除以了几?

展示交流

师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)

生:不成立,

师:为什么

生:因为0不能作除数,

师:0不能作除数,所以这个式子是错误的。(画叉)

师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)

生:不成立,因为在分数当中分母相当于除数,除数不能为0。

师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话

生:0除外

师板书0除外

师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?

生:同时和相同的数

师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)

师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。

生齐读二遍。

师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。

任务二

任务呈现

课本76页的例2,请一同学读题。

自主学习

生独立完成,完成后和同位的同学说一说你是怎样想的。

展示交流

每题请二名同学回答,(集体订正答案)

检测导结

1、目标练习

76页“做一做”

练习十四的1、2、6、7题

2、结果反馈

生做完后同桌交流,再指名说说结果。

3、反思总结

今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。

三、辅助设计

教具课件设计

小黑板正方形纸数块

板书设计

分数的基本性质

练习和作业设计

1、完成课本76页做一做中的1、2题。

生独立完成,师指名回答。

2、完成练习十四中的1、2、5、6、7题。

师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。

分数的基本设计教学设计 第17篇

教学目的:

理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2.理解和掌握分数的基本性质。

3.较好实现知识教育与思想教育的"有效结合。

教学难点:

理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。

教学准备:

板书有关习题的幻灯片。

教学过程:

一、复习

1.出示

在括号里填上适当的数:

指名说一说结果,并说一说你是根据什么填的?

二、课堂练习:

1.自主练习第4题。

学生先独立做,教师巡视,并个别指导,集体订正。

教师板书题目中的线段,指名让学生板演。

在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)

怎样找出相等的分数?

让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

然后要求学生在书上把这几个相应的点找出来。指名板演。

2.自主练习第5题。

先让学生独立做,教师巡视。个别指导。

指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

教师根据学生的回答选择几个题目进行板书。

3.自主练习第6题。

先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

集体订正。指名说一说自己的计算过程和结果。

教师根据学生的回答选择几个题目进行板书。

4.自主练习第7题。

学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

5.自主练习第8题。

学生先独立做。

集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?

分数的基本设计教学设计 第18篇

【教学目标】

1、经历探索分数基本性质的过程,理解分数的基本性质。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

【教学重点】

运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

【教学难点】

联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

【教学准备】

多媒体课件长方形白纸、圆片,彩色笔等。

【教学过程】

一、创设情境,激趣导入

师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?

生1:四、五、六年级分的地一样多。

生2:……

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知

1,小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2,汇报结果

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

生5:……

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)

4、探索分数的基本性质。

师:三个年级分的地一样多,那么你们觉得、、这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书=)

生:分数的分子分母发生了变化分数的大小不变。

师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?

生:分子分母同时乘2,……

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时相同0除外

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三:应用新知,练习巩固。

(一)练一练

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二)判断(抢答)

1、分数的分子、分母都乘过或除以相同的数分数的大小不变。

2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。

3、给分数的分子加上4,要是分数的大小,分母也要加上4。

(四)测一测

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四:总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)

五:作业练习册2、4题

【教学反思】

本节课教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!

这样的设计真是激发了学生的学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。

本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。

在学生通过听故事、看图片,让学生猜想、、这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。

推荐访问:教学设计 分数 必备 分数基本设计教学设计必备18篇 分数的基本设计教学设计(必备18篇) 分数的教学设计模板

热门文章

2024年浅谈纪检监察工作面临困难及对策

民主政治是实施权力监督的环境条件,而民主政治的精髓就是通过有效的权力配置实现以权力制约权力。构建社会主义和谐社会,建立政治文明国家,就要从严治党,就要加强党内监督,尤其要加强对党的各级组织、党的领导干

政治机关建设方面存在的不足和改进(4篇)

政治机关建设方面存在的不足和改进

2024公安民警职务晋升(3篇)

公安民警职务晋升

2024落实第一议题制度会议记录(5篇)

落实第一议题制度会议记录

2024年度关于加强公安机关网络舆情风险防范工作部分思考

当前,随着互联网的广泛普及和信息技术的快速发展,各种社会思潮、意识形态、价值观念在网络上交织碰撞,所形成的“网络话语”逐渐成为重要的舆情力量,使当前的社会舆论环境发生重大而深刻的变化。以“两微一端”为

基督教为亡者祈祷经文6篇【完整版】

基督教为亡者祈祷经文(诗班唱诗歌,等候开会)主持人:基督徒()荣归天家追思礼拜现在开始。主持人:全体肃立、默哀(信徒祷告不超一分钟为好)……默哀毕。主持人:

小学思政课实施方案小学思政课实施方案(完整)

随着国家对素质教育要求的不断加强,小学思政课在课程中的地位也越来越重要,是实现全面育人的重要组成部分。小学思政课是指以道德素养、宪法法律、人生观价值观、民族精神、科学技术、文化艺术、体育健康等为核心,

那些借调人到底怎么留下来?(2024年)

上级单位之所以要“借调”,恰恰说明这个单位缺人,特别是缺能做事、会做事的人,这就意味着有打破“借而不调”僵局的希望,从而名正言顺一直留下来。下面我结合身边朋友的真实故事说说怎么“调”。方案一:保持耐心

共青团xx市委“喜迎二十大、永远跟党走、奋进新征程”主题教育实践活动启动仪式主持词(全文完整)

文章详情共青团xx市委喜迎二十大、永远跟党走、奋进新征程主题教育实践活动启动仪式主持词尊敬的领导、全体青年朋友们:在中国共产主义青年团成立100周年之际,共青团中央决定,围绕迎接和学习宣传贯彻党的二十

2023最新烈士陵园闹鬼鬼把孩子追到烈士陵园(五篇)

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我

意识形态方面方面存在问题和不足(4篇)

意识形态方面方面存在问题和不足

学校二十大安保维稳工作实施方案(完整文档)

为切实做好党的二十大期间我校维稳安保工作,及时高效贯彻执行中央领导指示批示精神和省市委统一部署要求,各单位要始终站在讲政治、讲大局的高度,凝聚共识、主动担当、攻坚克难,狠抓校园维稳各项工作措施的落实,