2023年圆锥体积教学设计数学汇编9篇【优秀范文】
圆锥的体积教学设计数学第1篇第七课时:圆锥的体积教学内容:教科书第20~21页例5及相应的“试一试”,“练一练”和练习四的第1~3题。教学目标:1、组织学生参与实验,从而推导出圆锥体积的计算公式。2、下面是小编为大家整理的圆锥体积教学设计数学汇编9篇,供大家参考。
圆锥的体积教学设计数学 第1篇
第七课时:
圆锥的体积
教学内容:
教科书第20~21页例5及相应的“试一试”,“练一练”和练习四的第1~3题。
教学目标:
1、组织学生参与实验,从而推导出圆锥体积的计算公式。
2、会运用圆锥的体积计算公式计算圆锥的体积。
3、培养学生观察、比较、分析、综合的能力以及初步的空间观念。
4、以小组形式参与学习过程,培养学生的合作意识。
5、渗透转化的数学思想。
教学重点:理解和掌握圆锥体积的计算公式。
教学难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
教学资源:等底等高的圆柱和圆锥容器一套,一些沙或米等。
教学过程:
一、联系旧知,设疑激趣,导入新课。
1、我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具——长方体,正方体圆柱体,然后板书相应的计算公式)
2、我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)
3、(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高)
4、大家觉得我们今天要研究的圆锥的体积可能转化为什么图形来研究比较简单呢?能说说自己的理由吗?
5、它们的体积之间到底有什么关系呢?
二、实验操作、推导圆锥体积计算公式。
1、课件出示例5。
(1)通过演示使学生知道什么叫等底等高。
(2)让学生猜想:图中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?
(3)实验操作,发现规律。
(用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?
(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
2、教师课件演示
3、学生讨论实验情况,汇报实验结果。
4、启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积×1/3=底面积×高×1/3
用字母表示:V=1/3sh
小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以1/3?
5、教学试一试
(1)出示题目
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、发散练习、巩固推展
1、做“练一练”第1、2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3。
2、做练习四第1、2题。
学生做在课本上。之后学生反馈。错的要求说明理由。
四、小结
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
学生交流
五、作业
练习四第3题。
圆锥的体积教学设计数学 第2篇
教学内容:
人教版九年义务教育小学数学教科书第十二册。
整体感知:
这部分知识是学生在有了圆锥的认识和圆柱体积相关知识的基础上进行教学的。在知识与技能上,通过对圆锥体的研究,经历并理解圆锥体积公式的推导过程,会计算圆锥的体积;
在方法的选择上,抓住新旧知识间的联系,通过猜想、课件演示、实践操作,从经历和体验中验证,让学生在自主探索与合作交流过程中真正理解和掌握基本的数学知识与技能,数学思想和方法,使学生真正成为学习的主人。
教学目的:
1、使学生掌握圆锥体积的计算公式,会用公式计算圆锥的体积,解决日常生活中有关简单的实际问题。
2、让学生经历猜想——验证,合作——探究的教学过程,理解圆锥体积公式的推导过程,体验转化的思想。
3、培养学生动手操作、观察、分析、推理能力,发展空间观念,渗透事物是普遍联系的唯物辩证思想。
教学重点:
掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
教学难点:
理解圆锥体积公式的推导过程及解决生活中的实际问题。
教学过程:
一、 创设情境导入新课。
1、出示圆锥体容器组织学生谈一谈通过前几课的学习,你对圆锥有哪些了解?然后想一想关于圆锥你还有哪些问题?
2、引导学生自己想办法用多种方法来求这个圆锥体容器的体积,有困难的同学可以同桌交流,共同研究。(组织学生先独立思考,然后同桌讨论交流,最后汇报自己的想法。)
3、教师出示一个圆锥体的木块引导学生明确前面所想的方法太麻繁、不实用。并鼓励学生研究出一种简便快捷的方法来求圆锥的体积。
[点评:本环节通过一系列的问题情境,激发学生学习新知识的兴趣。首先让学生结合前面所学的知识来谈谈自己对圆锥的认识,进而提出自己对圆锥还存在的问题。这样不仅巩固了前面所学的知识,而且培养了学生的问题意识。然后放手让学生自己想办法用不同的方法求它的体积,拓展了学生的思维,培养了学生的创新能力,真正体现了学生的主体地位。最后让学生从具体的问题中体会到自己方法的太麻繁、不实用,从而让学生有思索出一种更简洁、广泛的求圆锥体积的方法需要。]
二、经历体验,探究新知
(一)渗透转化,帮助猜想
1、先组织学生自由畅谈圆锥的体积可能会与谁有关(圆柱)。先给学生独立思考的时间,然后汇报。汇报时要阐述自己的理由。教师引导学生回忆圆柱体积公式的推导过程。
2、组织学生拿出准备好的圆柱体铅笔和转笔刀来削铅笔,同时教师也随着学生一起来做。教师做好后要及时巡视,直到学生将铅笔削得尖尖的为止。然后引导学生认真观察削好后的铅笔是什么形体的?(此时的铅笔是由圆柱和圆锥两部分组成的)并组织学生通过观察比较、讨论交流得出两种形体的底与高及体积之间的关系。(削好后的圆柱与圆锥等底不等高,体积无关。)此时,教师要参与到小组讨论中,及时引导学生发现削好后的圆锥的体积与未削之前的这部分圆柱等底等高,并且体积也有关。组织学生自己的话来总结。最后,将自己的发现进行汇报。
3、课件出示:等底等高的圆柱和圆锥。组织学生认真观察,大胆猜想他们体积之间可能存在怎样的关系后说说理由。教师此时要引导学生展开想象的翅膀大胆去猜想……
[点评:本环节教师先引导学生回忆圆柱体积的推导过程,向学生渗透“转化”的思想。使学生感受到新知也可通过“转化”的方法变成已学过的知识来解决。然后留给学生充分的时间亲自动手去削铅笔,感受到圆锥是怎样转化成圆柱的。通过观察比较、讨论交流一步一步得出圆锥的体积和它等底等高的圆柱有关。同时运用学生已有的知识和经验让学生进行猜想它们之间有怎样的关系,发展了学生的想象空间,培养了学生的创新思维。]
(二)小组合作,实验验证。
1、教师发给每组学生一个准备好的等底等高的圆柱和圆锥、沙了,组织学生拿出等底等高的圆柱和圆锥进行实验。实验前小组成员进行组内分工,有的进行操作,有的记录……实验中教师要及时巡视指导并参与到小组实验中去及时了解学生实验的进展情况。并指导帮助学生顺利完成实验。
2、实验后组内成员进行交流。交流的过程中,要引导学生注重倾听别人的想法,并说出自己不同的见解。
3、首先各小组派代表进行汇报,其它小组可以补充。然后全班进行交流实验结果:得出等底等高的圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥体积的3倍。由圆柱体的体积公式推导出圆锥的体积公式。预设板书如下:
概括板书:
等底到高
V圆柱=Sh V圆锥= 1/3sh
4、深化公式。组织学生讨论给出不同的条件求圆锥的体积,如:半径、直径、周长。预设板书如下:
V =1/3πr2h V =1/3(c/2π)2h V =1/3(d/2)2h
5、教师组织学生独立完成书中例题后集体订正。
[点评:俗话说:“实践是检验真理的唯一标准。”学生在前面猜想的基础上通过小组合作动手实验、具体操作,验证得出等底等高的圆锥与圆柱体积间的关系,使自己的猜想在这里得到了验证。这一过程的设计潜移默化地向学生渗透了“猜想——————验证”这一完整的学习数学的方法。从而也培养了学生合作的意识、发展了学生的思维、培养了学生的创新意识和实践能力。最后从等底等高的圆柱与圆锥体积间的关系及圆柱的体积公式中,得出了圆锥体的体积公式。这个过程,让学生充分经历了知识的形成过程,体现了“动态生成”,为抽象的理论提供了感性材料。]
(三)看书质疑:你还有哪些不懂的问题或不同的见解可以提出来我们共同研究。
[点评:伟大的科学家爱因斯坦曾说过:“提出一个问题比解决一个问题更重要。”学生经历了问题的探索过程后,再将他们引加到书本上。这时学生的可能提的更有价值、有深度。]
三、巩固新知,拓展应用。
1、判断并说明理由
(1)圆柱体积是圆锥体积的3倍( )
(2)一个圆锥的高不变,底面积越大,体积越大。( )
(3)一个圆锥体的高是3分米,底面积10平方分米,它的体积是30立方分米。( )
组织学生打手势判断后说明理由,并强调圆锥的体积是圆柱体积的1/3是以等底等高为前提的。
2、求下列圆锥的体积(口答,只列式,不计算)
s=4平方米,h=2平方米
r=2分米,h=3分米
d=6厘米,h=5厘米
组织学生根据圆锥体积公式解答。
3、实践与应用:
学校操场有一堆圆锥沙子,求它的体积需要什么条件,你有什么好办法?
组织学生进行讨论,求圆锥体的沙堆的体积需要什么条件后并谈如何来测量这些所需条件,有条件的可领学生实地操作一下。再求体积。
[点评:练习设计由浅入深,由例题到实践应用,层次鲜明,并注重培养学生解决实际问题的能力,达到学以致用的目的]
四、课后总结,感情升华。
这节课你有什么收获?你是怎样获得的?
[不仅关注学生知识技能的掌握,更注重数学方法的提炼及学生的情感、态度、学习数学的信心等,促进了学生的可持续发展。]
[总评:
1、钻研教材,创造性地使用教材。
教师在充分了解学生、把握课程标准、教学目标、教材编写意图的基础上,根据学生生活实际和学习实际,有目的地对教材内容进行改编和加工。如学生削铅笔这一活动的设计,学生从“削”的过程中体验到圆柱与圆锥的"联系;
再如动手实验这一环节的设计,使学生在观察、比较、动手操作,合作交流中理解掌握新知。创造性地融入一些生活素材,加强了数学与生活的密切联系。
2、注重数学思想方法的渗透。
数学思想方法是数学知识的精髓,又是知识转化为能力的桥梁。新课伊始,便让学生自己想办法求圆锥的体积,此时学生便想办法将圆锥体的容器装满水后倒入圆柱或长(正)方体的容器中,从而求出圆锥的体积。这一过程潜移默化地渗透“转化”的数学思想方法。再如:让学生将圆柱体的铅笔削成圆锥体的这一活动,也同样渗透了转化的思想方法。
3、猜想—————验证、合作交流等学习方式体现了学生的主体地位。
本节课在探究新知的过程中,借助削铅笔这一学生熟知的活动帮助学生猜想圆锥的体积可能会与谁有关,再进一步猜想又会有怎样的关系。紧接着让学生在具体的实验操作中去验证自己的猜想是否正确,从而得出结论。整个过程是在教师的引导下,学生自主探索,发现问题,在合作交流中解决问题。教师留出了充足的时间,让学生去思考、讨论、探索、争辩和交流。真正体现了人人学有价值的数学,不同的人在数学上得到不同的发展
圆锥的体积教学设计数学 第3篇
教学过程:
一、复习导入。
1、怎样计算圆柱的体积?(板书公式)
2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?
3、出示一个圆锥,请学生说说圆锥的特征。
4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)
二、动手测量,大胆猜想。
1、动手测量,找圆锥和圆柱的底和高的关系。
师:为了我们研究圆锥体积的方便,每个小组都准备了一个圆柱和一个圆锥。下面请同学们以小组为单位,动手测量一下,你们手中的圆柱和圆锥,看看你能发现什么?
2、学生动手测量,教师巡视。给予指导。
3、交流得出结论:圆柱和圆锥等底等高。
4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?
三、实验操作,推导出圆锥体积计算公式。
1、实验操作。
师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。
2、学生分组实验,教师巡视。
3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?
4、强调等底等高。
5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)
6、练习(出示)
(1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。
(2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。
7、得出圆锥的体积计算公式。
8、用字母表示圆锥的体积计算公式。
三、巩固练习。
1、计算下面圆锥的体积。(只列式不计算)
底面积是6.28平方分米,高是9分米。
底面半径是6厘米,高是4.5厘米。
底面直径是4厘米,高是4.8厘米。
底面周长是12.56厘米,高是6厘米。
2、填空。
a圆锥的体积=(),用字母表示是()。
b圆柱体积的与和它()的圆锥的体积相等。
c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。
3、判断。(用手势表示)
a圆柱体的体积一定比圆锥体的体积大()
b圆锥的体积等于和它等底等高的圆柱体的()
c正方体、长方体、圆锥体的体积都等于底面积×高。()
d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()
四、全课小结。
师:今天这结课学习了什么?通过今天的学习研究你有什么收获?
五、解决实际问题。
在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)
圆锥的体积教学设计数学 第4篇
教学内容:
小学数学人教版第12册42页—43页。
教学目标:
1、通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。
2、通过学生动脑、动手,培养学生的思维能力和空间想象能力。
3、培养学生个人的自主学习能力和小组合作学习的能力。
教学重点和难点:
掌握圆锥体体积公式的推导。
教具准备:
1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。
2、多媒体课件设计。
教学过程设计
一、复习准备:
1、怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)
2、一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?
3、圆锥有什么特征?
学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。
二、导入新课
今天我们就利用这些知识探讨新的问题—————怎样计算圆锥的体积。(板书课题)
三、进行新课
1、探讨圆锥的体积公式
教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:
学生回答,教师板书:圆柱——————(转化)——————长方体圆柱体积公式————————(推导)长方体体积公式。
教师:借鉴这种方法,为了我们研究圆锥体体积的`方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。
(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)
(学生得出:底面积相等,高也相等)底面积相等,高也相等,用数学语言说就叫“等底等高”。(板书:等底等高)
(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)
教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)
水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。
(3)学生分组做实验。
A、谁来汇报一下,你们组是怎样做实验的?
B、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?
(学生发言:圆柱体的体积是圆锥体体积的3倍)
同学们得出这个结论非常重要,其他组也是这样的吗?
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?
学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体)
(老师在体积公式与“等底等高”四个字上连线)
现在我们得到的这个结论就更完整了。(指名反复叙述公式)
今后我们求圆锥体体积就用这种方法来计算。
四、巩固反馈
1、例一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?
A、学生完成后,进行小组交流。
B、你是怎样想的和怎样解决问题。(提问学生多人)
C、教师板书:
×19×12=76(立方厘米)
答:它的体积是76立方米。
2、练习题。
一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈)
3、出示例2:要求学生自己读题,理解题意思。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
(1)提问:从题目中你知道什么?
(2)学生独立完成后教师提问。并回答同学的质疑:3.14×()×1.2×表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?
4、比较:例1和例2有什么地方不同?
(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积;
(2)例1是直接求体积,例2是求出体积后再求重量。
我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。
五、巩固练习
1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?
2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。
(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是( )。
(1)立方米。
(2)3a立方米。
(3)9立方米。
(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是( )立方米
(1)6立方米。
(2)3立方米。
(3)2立方米。
2、学生操作:
看看我们的教室是什么体?(长方体)
要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)
指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。
六、小结
这节课你有什么收获?
七、作业
书本44页第3、4、5。
圆锥的体积教学设计数学 第5篇
教材分析
《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。
学情分析
六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。
教学目标
1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。
3、体会数学与生活的密切联系,感受探究成功的快乐。
教学重点和难点
重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。
难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。
教学过程
教学环节
一、复习准备
1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?
2、圆锥有什么特点?(同时出示幻灯)
3、在这个圆锥体中,几号线段是圆锥体的高。
4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1、长方体、正方体、圆柱。
2、一个顶点;
一个侧面,展开是一个扇形;
一个底面,是圆形;
一条高,从顶点到底面圆心的垂直距离。
3、学生手势出示
4、想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。
二、创设情境
出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)
引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。
三、学习新课
1、猜想体积大小
实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。
圆锥体积可能是圆柱体积的二分之一、三分之一。猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。
2、理解等底等高
我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?
底面积相等,高也相等,用数学语言说就叫“等底等高”。底面积相等,高也相等。为推导圆锥的体积计算公式打下基础
3、猜想关系、实验验证
同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。
谁来汇报一下,你们组是怎样做实验的?
你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验。
学生汇报
用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。
4、总结公式
我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)
V锥=V柱×1/3=sh×1/3
“sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。
5、全面验证
是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?
(课件演示)等底不等高、等高不等底
为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?
现在我们得到的这个结论就更完整了。(指名反复叙述公式。)
今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)
在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。
6、圆锥体积公式的实际应用
(1)例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米.它的体积是多少立方厘米?
(2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)
(3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?
(4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?
圆锥的体积教学设计数学 第6篇
教学目标:
1、使学生理解求圆锥体积的计算公式。
2、会运用公式计算圆锥的体积。
3、培养学生初步的空间观念和思维能力;
让学生认识“转化”的思考方法。
教学重点
圆锥体体积计算公式的推导过程。
教学难点
正确理解圆锥体积计算公式。
教学过程:
一、铺垫孕伏
1、提问:
(1)圆柱的体积公式是什么?
(2)投影出示圆锥体的图形,学生指图说出圆锥的底面、侧面和高。
2、导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?这节课我们就来研究这个问题。(板书:圆锥的体积)
二、探究新知
(一)指导探究圆锥体积的计算公式。
1、教师谈话:
下面我们利用实验的方法来探究圆锥体积的计算方法。老师给每组同学都准备了两个圆锥体容器,两个圆柱体容器和一些沙土。实验时,先往圆柱体(或圆锥体)容器里装满沙土(用直尺将多余的沙土刮掉),倒人圆锥体(或圆柱体)容器里。倒的时候要注意,把两个容器比一比、量一量,看它们之间有什么关系,并想一想,通过实验你发现了什么?
2、学生分组实验
学生汇报实验结果
①圆柱和圆锥的底面积相等,高不相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了一次,又倒了一些,才装满。
②圆柱和圆锥的底面积不相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了两次,又倒了一些,才装满。
③圆柱和圆锥的底面积相等,高相等,圆锥体容器装满沙土往圆柱体容器里倒,倒了三次,正好装满。
……
4、引导学生发现:
圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积是和它等底等高圆柱体积的。
板书:
5、推导圆锥的体积公式:用字母表示圆锥的体积公式。板书:
6、思考:要求圆锥的体积,必须知道哪两个条件?
7、反馈练习
圆锥的底面积是5,高是3,体积是()
圆锥的底面积是10,高是9,体积是()
(二)算一算
学生独立计算,集体订正。
说说解题方法
三、全课小结
通过本节的学习,你学到了什么知识?(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)
四、课后反思
第二课时
教学目标:
1、进一步掌握圆柱和圆锥体积的计算方法,能正确熟练地运用公式计算圆锥的体积。
2、进一步培养学生运用所学知识解决实际问题的能力和动手操作的能力。
3、进一步熟悉圆锥的体积计算
教学难点:
圆锥的体积计算
教学重点:
圆锥的体积计算
教学过程:
一、基本练习
圆锥体积计算公式
相邻两个面积单位之间的进率是多少?
相邻两个体积单位之间的进率是多少?
二、实际应用
占地面积是求得什么?
三、实践活动
四、课后反思
圆锥的体积教学设计数学 第7篇
一、教学内容
《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
二、教材分析
本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。
三、教学目标
1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
四、教学重难点
教学重点:圆锥体积的计算公式
教学难点:圆锥的体积公式推导。
五、课前准备
课件
六、教学过程
一、谈话引入
今天,我们来学习圆锥的体积公式是怎样推导出来的?
二、自主探索,操作实验
下面,我们一起来做个小实验
(1)取一个圆柱体的容器和圆锥体的容器各一个。让学生观察一下,得出:这两个容器等底等高。
(2)往圆锥体容器中装满水,倒入圆柱体的容器中,一连倒入三次,这时候圆柱体的容器中装满水。
(3)这两个容器等底等高,通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
引导学生观察:圆柱的体积的三分之一等于圆锥的体积,而圆柱的体积等于底面积乘高,圆柱体积的三分之一用底面积乘高乘三分之一表示,因为圆柱体积的三分之一等于圆锥的体积,所以推导出圆锥的体积等于底面积乘高乘三分之一。用字母表示:v=1/3sh
三、练习填空
1、圆锥的体积=(),用字母表示是()。
2、圆柱体积的与和它()的圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。
学生练习,教师总结。
四、巩固练习:
求下面各圆锥的体积,只列算式。(单位:厘米)
观察第一个图形告诉底面半径和高,要先求出底面积,然后根据圆锥的体积公式带入数字。第二个图形告诉底面直径和高,要先求出底面半径,再求底面积,然后根据圆锥的体积公式带入数字。
五、运用所学的知识解决实际问题
一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?一堆大米,近似于圆锥形,量得底面周长是18、84米,高6米。它的体积是多少立方米?
学生思考,教师讲解:
先求半径:18、84÷ 3、14 ÷ 2=3(米)
再求底面积:3、14×3=28、26(平方米)
求圆锥体积:1/3×28、26×6=56、52(立方米)
最后求大米的重量:56、52×500=28260(千克)
六、计算圆锥的体积所必须的条件
学生思考,教师归纳总结
计算圆锥的体积所必须的条件可以是:
底面积和高
底面半径和高
底面直径和高
底面周长和高
只要知道啦其中的两个条件,就可以求出圆锥的体积。
微课学习指导
本微课的教学内容为《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
微课视频共8分53秒,前18秒为片头,后面是利用圆柱的体积推导出圆锥的体积,利用实验推导的过程及练习巩固的过程。
配套学习资料
圆柱的体积公式
圆柱的体积公式等于底面积乘高,用字母表示:V=sh
微课制作技术
1、使用ppt制作片头。
2、使用手机摄录视频效果。
3、使用Camtasia Studio软件和会声会影软件进行后期的混音制作和整合。
4、使用格式工厂进行最后的格式转换。
教学需求分析
适用对象分析:适用于六年级下册的学生,在学习了圆柱的体积之后才能学习此内容。
学习内容分析:《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
学习目标分析:
(1)通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。
圆锥的体积教学设计数学 第8篇
设计意图:
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,旨在让学生理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
我的设计是“颠倒课堂”的一次尝试,旨在让学生晚上在家观看教学视频,进行深层次的掌握学习,一次学不会,还可以反复学习,直到学会为止。这是与传统的“白天在课室听老师讲课,晚上回家做作业”的方式正好相反的课堂模式。
教学目标:
1、理解掌握求圆锥体积的计算公式和推导过程,会运用公式计算圆锥的体积。
2、会应用公式计算圆锥的体积并解决一些实际问题。
3、帮助学生建立空间观念,培养学生抽象的逻辑思维能力,激发学生的想象力。
教学重点:
使学生初步掌握圆锥体积的计算方法并解决一些实际问题
教学难点:
圆锥体积计算方法和推导过程。
教学过程:
一、复习铺垫:
1、揭示课题:今天我们一起来探究如何计算圆锥的体积。
2、以旧引新:我们知道,圆柱的体积=底面积×高,字母公式:V=Sh。如何计算圆锥的体积呢?圆柱的底面是圆的,圆锥的底面也是圆的,圆锥的体积与圆柱的体积有没有关系呢?
二、实验操作:
1、请看接下来的2个实验:
2、实验准备:2组等底等高的圆柱、圆锥容器;
水与沙子。
3、播放视频:
实验一:我们将圆锥容器装满水,再往圆柱容器里面倒(倒3次),3次正好装满。
实验二:我们将圆柱容器装满沙,再往圆锥容器里面倒(倒3次),3次正好装满。
4、通过实验你们发现了什么?
三、公式推导:
1、通过两次的实验我们可以得出结论:
圆柱的体积是与它等底等高的圆锥体积的3倍;
也就是说圆锥的体积是与它等底等高的圆柱体积的。
2、写成公式:圆锥的体积=与它等底等高的圆柱体积×;
因为圆柱的体积=底面积×高,所以圆锥的体积=底面积×高×;
写成字母公式:V= Sh。因此,要求圆锥的体积,必须知道圆锥的底面积与高。
3、如果知道圆锥的底面半径r与高h,圆锥的体积公式还可以怎样表示呢?因为底面圆的面积s=πr2,所以圆锥的体积V= πr2h。
4、在应用圆锥体积公式时不要忘记乘!
四、知识应用
1、接下来我们应用公式解决实际问题。
题:工地上有一堆沙子,近似于一个圆锥体,沙堆底面直径4m,高1.2m。这堆沙子大约有多少立方米?(得数保留两位小数)
2、分析题意:要求这堆沙子大约有多少立方米,就是求圆锥体沙堆的体积。根据公式我们需要知道沙堆的底面积与高。根据底面直径4m,可以先求出沙堆的底面积,再用底面积乘高求出沙堆的体积。
3、列式解答。(分步与综合)
五、知识小结:
今天我们学习了圆锥的体积计算:V= Sh= πr2h。
在应用圆锥体积公式时我们要记住乘,还要留意单位名称是否统一!
六、结束。
【课堂教学设想】
1、学生看完视频对于实验成功的必要条件“等底等高”、“每次倒满”等有了一定的认识,且会跃跃欲试,为课堂的实验操作做了铺垫。
2、课堂上组织学生分小组实验:
圆柱与圆锥等底不等高时,实验结果会怎样?
圆柱与圆锥等高不等底时,实验结果会怎样?
“圆锥的体积是圆柱体积的”这一关系存在的条件是什么?
圆锥与圆柱体积相等时,如果高相等,底面积有什么关系?如果底面积相等,高有什么关系?
3、课堂检测,促进知识内化。
【教学反思】
本节课教学目标定位为学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,所以设计时力求每个环节都为教学目标服务。
课前观看视频。首先回忆圆柱体积公式,通过圆柱与圆锥的底面都是圆的,让学生猜测圆柱与圆锥体积之间的关系,然后通过两次的实验验证圆锥体体积的计算方法,实现了一个“做数学”的过程。通过课外的视频学习,能加深学生对图形特征以及图形之间的内在联系的认识,进一步领会转化的数学思想。
课内通过小组实验操作进一步验证“圆锥的体积是圆柱体积的”这一关系存在的必要条件是等底等高,从而推导出圆锥的体积计算公式:V= Sh= πr2h,从而培养了学生构建知识系统的能力和知识迁移及综合整理的能力。课堂上不再重复学习微课程中的知识,把时间花在完成练习上,通过不同的练习检测学生的掌握情况,对暴露的问题进行有针对性的辅导,从而提高教学效率。
圆锥的体积教学设计数学 第9篇
教学内容:
《圆锥的体积》是九年义务教育六年制小学数学第十一册第三单元的内容。
教学目标:
1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。
2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。
3、培养学生的合作意识及主动探索知识的精神。
教学重点:
让学生自己亲身体验到计算圆锥体积的不同方法。从而理解计算公式v=1/3sh,并感受到计算公式的简便。
教学难点:能利用不同方法计算不同物体的体积。知识的活学活用。
教学准备:
1、个学生一组,每组各有量杯;
量桶;
一升的容器;
等底等高的圆柱与圆锥器皿;
大米,沙子或水;
1立方厘米的小方块若干。
2、教学软件。
教学流程:
一、创设情景,激趣引新。
1、首先教师手中拿一圆柱体问:“同学们,老师想知道这个圆柱体的体积你们能帮助我吗?”
(学生踊跃举手说明。可以先测量出圆柱的半径与高。再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。)
2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:“那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?”(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。
〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。从而产生学习新知的欲望。〉
二、小组合作,探究学习。
1、动手操作,测量圆锥体的体积。
要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。测量物体是容器的厚度不计。
〈全体学生在动手操作,互相商量解决问题的办法。教师巡回指导。课堂呈现小组探究学习的热烈场面。〉
3、分组汇报不同的方法。
〈学生在汇报时可边讲解边示范〉
方法一:可以利用量杯。首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的体积也就是圆锥体的体积。
方法二:利用手中的一立方厘米的小木块进行估算。
方法三:受《曹冲称象》的启示。利用一生的容器。把它装满水后将圆锥体放入,溢出水后拿出圆锥体。这时看容器空出来的地方为长方体,用一立方分米减去长方体的体积就可以得到圆锥体的体积了。
方法四:把圆锥体内装满大米、沙子或水,然后将它到入与它等底等高的圆柱体容器里。发现到了3次正好到慢。也就是说,圆锥体的体积等于与它等底等高的圆柱体的三分之一。用字母表示为:v=1/3sh
〈设计意图:通过讨论研究和动手操作,发展学生的创新能力,和解决实际问题的能力。〉
(1)在讲解第四个方法时,教师可以向学生质疑,在操作此过程时有一个非常重要的前提条件是什么?为什么圆锥体的体积等于与它等底等高圆柱体体积的三分之一?
(2)学生再次在小组内操作探究。
(3)汇报结论。
(4)微机演示。
当等底不等高时,当等高不等底时,当底和高都不相等时,出现的结果是怎样的。
〈设计意图:通过学生探究与微机演示,使学生直观的感受圆锥体与圆柱体之间关系。加深对圆锥体体积计算公式的理解。〉
4、评价以上各种办法
同学们的结论是用公式计算比较方便。
三、解决实际问题
(问题一)
1、各小组量一量,算一算自己组内的圆锥体的体积。(测量,计算时都要保留整数)
2、汇报结果。
先测量出圆锥体的直径,算出底面积。再测量出高,算出它的体积。算式:1/3x[3.14x(10/2)x10]≈262立方厘米(忽略厚度,即把溶剂可看作体积)
(问题二)
1、现知道手中的圆锥体每立方厘米约装0.9克大米,计算这个圆锥体容器可装多少克大米?
2、汇报结果。
用每立方厘米装大米的克数乘圆锥的体积。算式:0.9x262≈236克
3、验证计算结果
用称称一称,比较一下结果。
4、讨论两次结果为什么不同。
由于测量时厚度不计,计算时是近似值。都存在误差。
〈设计意图:通过测量,计算等环节,发展学生的应用意识及估算的能力。〉
(问题三)
利用圆锥体积公式计算。
(1)r=2cmh=6cmv=?
(2)d=6mh=5mv=?
(问题四)
计算不规则物体体积或容积。(直说出计算的方法即可)
1、用什么方法计算出葫芦能装多少水?
2、胡萝卜的体积怎样计算?
3、不规则的零件体积计算?
〈设计意图:结合生活实际让学生感受到数学与生活的联系。及解决实际问题的不同方法及策略,培养创新能力。〉
四、总结全课
说说你的收获,鼓励学生学习知识要活学活用,大胆动脑,勇于创新。
推荐访问:圆锥 教学设计 汇编 圆锥体积教学设计数学汇编9篇 圆锥的体积教学设计数学(汇编9篇) 圆锥的体积教学过程设计