2023高考数学解题17篇(2023年)
高考数学解题第1、函数与方程思想函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运下面是小编为大家整理的高考数学解题17篇,供大家参考。
高考数学解题 第1篇
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、 数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
高考数学解题 第2篇
1、提前进入数学情境
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
2、“内紧外松”
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
3、沉着应战
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
4、“六先六后”
在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。
1).先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。
2).先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。
5、一“慢”一“快”
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
6、确保运算准确
数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。速完成。
7、规范书写
考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
8、讲究方法
会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。
1).缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。
2).跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
9、以退求进
发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
10、执果索因
对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。
11、解决探索性问题
对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
12、面—点—线
解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。
高考数学解题 第3篇
1、注意分步解答题目的形式,若各个小问题由一个大前提统领,则很可能上面的结论是下面问题的条件,要注意这一点,同时若小问题单独添加了限制条件,则其结论不可应用于下一个小问题的解答,所以应仔细审题,不可疏忽。
2、在运算过程中要求一次性运算准确,否则若出现运算失误,考生往往受思维定式的影响,很难检查出来。只要细心了,对自己就要有信心,不要一道题做了再反复去检查是否准确,那样会浪费大量宝贵的时间,在此问题上应把握“宁慢勿粗”。
3、对于解答题,要注重通性通法,不要过于追求技巧,把高考神秘化。因为高考越来越注重基础与通性通法的考查。举个例子来说吧,解析几何对大部分学生来说很难得全分,通常解析几何放在高考最后一题或倒数第二题的位置,算是一个压轴题吧。这类解析几何题的通法就是把直线方程与曲线方程联立,虽然有些时候可能计算会比较麻烦,但是都能做得出来。如果过于关注技巧,对有些题目就不适用了。
4、对绝大部分同学来说,要把主要精力和时间放在常规题目上(一般是指前19道题和最后1道选做题)。从高考的试卷来看,它的基础分可能会占到百分之七八十,如果你把基础题、常规题做好了,取得中等成绩是没问题的。在这个基础上,再拿一些难题的分数,就能获得比较理想的分数了。反过来,如果求快心切,就很容易在前面的基础题上出现本来可以避免的失误,而后面的难题又不一定得分,这样和别人的差距就拉大了,很吃亏。
高考数学解题 第4篇
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。
2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。
进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
高考数学解题 第5篇
1 . 适用条件
[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)
(1)若f(x)=-f(x+k),则T=2k;
(2)若f(x)=m/(x+k)(m不为0),则T=2k;
(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:周期函数,周期必无限周期函数未必存在最小周期,如:常数函数。周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下
(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2
(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;
(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称
4 . 函数奇偶性
(1)对于属于R上的奇函数有f(0)=0;
(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
(3)奇偶性作用不大,一般用于选择填空
5 . 数列爆强定律
(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);
(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立
(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q
6 . 数列的终极利器,特征根方程
首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),
a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。
二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)
7 . 函数详解补充
1、复合函数奇偶性:内偶则偶,内奇同外
2、复合函数单调性:同增异减
3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。
它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。
8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法
前面减去一个1,后面加一个,再整体加一个2
9 . 适用于标准方程(焦点在x轴)爆强公式
k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo
注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10 . 强烈推荐一个两直线垂直或平行的必杀技
已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0
若它们垂直:(充要条件)a1a2+b1b2=0;
若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[
这个条件为了防止两直线重合)
注:以上两公式避免了斜率是否存在的麻烦,直接必杀!
11 . 经典中的经典
相信邻项相消大家都知道。
下面看隔项相消:
对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]
注:隔项相加保留四项,即首两项,尾两项。自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!
12 . 爆强△面积公式
S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)
注:这个公式可以解决已知三角形三点坐标求面积的问题
13 . 你知道吗?空间立体几何中:以下命题均错
(1)空间中不同三点确定一个平面
(2)垂直同一直线的两直线平行
(3)两组对边分别相等的四边形是平行四边形
(4)如果一条直线与平面内无数条直线垂直,则直线垂直平面
(5)有两个面互相平行,其余各面都是平行四边形的几何体是棱柱
(6)有一个面是多边形,其余各面都是三角形的几何体都是棱锥
注:对初中生不适用。
14 . 一个小知识点
所有棱长均相等的棱锥可以是三、四、五棱锥。
15 . 求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值
答案为:当n为奇数,最小值为(n2-1)/4,在x=(n+1)/2时取到;
当n为偶数时,最小值为n2/4,在x=n/2或n/2+1时取到。
16 . √〔(a2+b2)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b为正数,是统一定义域)
17 . 椭圆中焦点三角形面积公式
S=b2tan(A/2)在双曲线中:S=b2/tan(A/2)
说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。
18 . 爆强定理
空间向量三公式解决所有题目:cosA=|{向量向量b}/[向量a的模×向量b的模]
(1)A为线线夹角
(2)A为线面夹角(但是公式中cos换成sin)
(3)A为面面夹角注:以上角范围均为[0,派/2]。
19 . 爆强公式
12+22+32+…+n2=1/6(n)(n+1)(2n+1);123+223+323+…+n23=1/4(n2)(n+1)2
20 . 爆强切线方程记忆方法
写成对称形式,换一个x,换一个y
举例说明:对于y2=2px可以写成y×y=px+px
再把(xo,yo)带入其中一个得:y×yo=pxo+px
21 . 爆强定理
(a+b+c)2n的展开式[合并之后]的项数为:Cn+22,n+2在下,2在上
22 . 转化思想
切线长l=√(d2-r2)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。
23 . 对于y2=2px
过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。
爆强定理的证明:对于y2=2px,设过焦点的弦倾斜角为A
那么弦长可表示为2p/〔(sinA)2〕,所以与之垂直的弦长为2p/[(cosA)2]
所以求和再据三角知识可知。
(题目的意思就是弦AB过焦点,CD过焦点,且AB垂直于CD)
24 . 关于一个重要绝对值不等式的介绍爆强
∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣
25 . 关于解决证明含ln的不等式的一种思路
举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)
把左边看成是1/n求和,右边看成是Sn。
解:令an=1/n,令Sn=ln(n+1),则bn=ln(n+1)-lnn,
那么只需证an>bn即可,根据定积分知识画出y=1/x的图。
an=1×1/n=矩形面积>曲线下面积=bn。当然前面要证明1>ln2。
注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。说明:前提是含ln。
26 . 爆强简洁公式
向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。
记忆方法:在哪投影除以哪个的模
27 . 说明一个易错点
若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕
同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a) 牢记
28 . 离心率爆强公式
e=sinA/(sinM+sinN)
注:P为椭圆上一点,其中A为角F1PF2,两腰角为M,N
29 . 椭圆的参数方程也是一个很好的东西,它可以解决一些最值问题。
比如x2/4+y2=1求z=x+y的最值。
解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!
30 . 仅供有能力的童鞋参考的爆强公式
和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
积化和差
sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2
31 . 爆强定理
直观图的面积是原图的√2/4倍。
32 . 三角形垂心爆强定理
(1)向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心)
(2)若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。
33 . 维维安尼定理(不是很重要(仅供娱乐))
正三角形内(或边界上)任一点到三边的距离之和为定值,这定值等于该三角形的高。
34 . 爆强思路
如果出现两根之积x1x2=m,两根之和x1+x2=n
我们应当形成一种思路,那就是返回去构造一个二次函数
再利用△大于等于0,可以得到m、n范围。
35 . 常用结论
过(2p,0)的直线交抛物线y2=2px于A、B两点。
O为原点,连接。必有角AOB=90度
36 . 爆强公式
ln(x+1)≤x(x>-1)该式能有效解决不等式的证明问题。
举例说明:ln(1/(22)+1)+ln(1/(32)+1)+…+ln(1/(n2)+1)<1(n≥2)
证明如下:令x=1/(n2),根据ln(x+1)≤x有左右累和右边
再放缩得:左和<1-1/n<1证毕!
37 . 函数y=(sinx)/x是偶函数
在(0,派)上它单调递减,(-派,0)上单调递增。
利用上述性质可以比较大小。
38 . 函数
y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减。
另外y=x2(1/x)与该函数的单调性一致。
39 . 几个数学易错点
(1)f`(x)<0是函数在定义域内单调递减的充分不必要条件
(2)研究函数奇偶性时,忽略最开始的也是最重要的一步:考虑定义域是否关于原点对称
(3)不等式的运用过程中,千万要考虑"="号是否取到
(4)研究数列问题不考虑分项,就是说有时第一项并不符合通项公式,所以应当极度注意:数列问题一定要考虑是否需要分项!
40 . 提高计算能力五步曲
(1)扔掉计算器
(2)仔细审题(提倡看题慢,解题快),要知道没有看清楚题目,你算多少都没用
(3)熟记常用数据,掌握一些速算技
(4)加强心算、估算能力
(5)检验
41 . 一个美妙的公式
已知三角形中AB=a,AC=b,O为三角形的外心,
则向量AO×向量BC(即数量积)=(1/2)[b2-a2]
证明:过O作BC垂线,转化到已知边上
42 . 函数
①函数单调性的含义:大多数同学都知道若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小),但有些意思可能有些人还不是很清楚,若函数在D上单调,则函数必连续(分段函数另当别论)这也说明了为什么不能说y=tanx在定义域内单调递增,因为它的图像被无穷多条渐近线挡住,换而言之,不连续.还有,如果函数在D上单调,则函数在D上y与x一一对应.这个可以用来解一些方程.至于例子不举了
②函数周期性:这里主要总结一些函数方程式所要表达的周期设f(x)为R上的函数,对任意x∈R
(1)f(a±x)=f(b±x)T=(b-a)(加绝对值,下同)
(2)f(a±x)=-f(b±x)T=2(b-a)
(3)f(x-a)+f(x+a)=f(x)T=6a
(4)设T≠0,有f(x+T)=M[f(x)]其中M(x)满足M[M(x)]=x,且M(x)≠x则函数的周期为2
43 . 奇偶函数概念的推广
(1)对于函数f(x),若存在常数a,使得f(a-x)=f(a+x),则称f(x)为广义(Ⅰ)型偶函数,且当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)
(2)若f(a-x)=-f(a+x),则f(x)是广义(Ⅰ)型奇函数,当有两个相异实数a,b满足时,f(x)为周期函数T=2(b-a)
(3)有两个实数a,b满足广义奇偶函数的方程式时,就称f(x)是广义(Ⅱ)型的奇,偶函数.且若f(x)是广义(Ⅱ)型偶函数,那么当f在[a+b/2,∞)上为增函数时,有f(x1) 44 . 函数对称性 (1)若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称 (2)若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称 柯西函数方程:若f(x)连续或单调 (1)若f(xy)=f(x)+f(y)(x>0,y>0),则f(x)=㏒ax (2)若f(xy)=f(x)f(y)(x>0,y>0),则f(x)=x2u(u由初值给出) (3)f(x+y)=f(x)f(y)则f(x)=a2x (4)若f(x+y)=f(x)+f(y)+kxy,则f(x)=ax2+bx(5)若f(x+y)+f(x-y)=2f(x),则f(x)=ax+b特别的若f(x)+f(y)=f(x+y),则f(x)=kx 45 . 与三角形有关的定理或结论中学数学平面几何最基本的图形就是三角形 ①正切定理(我自己取的,因为不知道名字):在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC ②任意三角形射影定理(又称第一余弦定理): 在△ABC中, a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA ③任意三角形内切圆半径r=2S/a+b+c(S为面积),外接圆半径应该都知道了吧 ④梅涅劳斯定理:设A1,B1,C1分别是△ABC三边BC,CA,AB所在直线的上的点,则A1,B1,C1共线的充要条件是CB1/B1A·BA1/A1C·AC1/C1B=1 44 . 易错点 (1)函数的各类性质综合运用不灵活,比如奇偶性与单调性常用来配合解决抽象函数不等式问题; (2)三角函数恒等变换不清楚,诱导公式不迅捷。 45 . 易错点 (3)忽略三角函数中的有界性,三角形中角度的限定,比如一个三角形中,不可能同时出现两个角的正切值为负 (4)三角的平移变换不清晰,说明:由y=sinx变成y=sinwx的步骤是将横坐标变成原来的1/∣w∣倍 46 . 易错点 (5)数列求和中,常常使用的错位相减总是粗心算错 规避方法:在写第二步时,提出公差,括号内等比数列求和,最后除掉系数; (6)数列中常用变形公式不清楚,如:an=1/[n(n+2)]的求和保留四项 47 . 易错点 (7)数列未考虑a1是否符合根据sn-sn-1求得的通项公式; (8)数列并不是简单的全体实数函数,即注意求导研究数列的最值问题过程中是否取到问题 48 . 易错点 (9)向量的运算不完全等价于代数运算; (10)在求向量的模运算过程中平方之后,忘记开方。 比如这种选择题中常常出现2,√2的答案…,基本就是选√2,选2的就是因为没有开方; (11)复数的几何意义不清晰 49 . 关于辅助角公式 asint+bcost=[√(a2+b2)]sin(t+m)其中tanm=b/a[条件:a>0] 说明:一些的同学习惯去考虑sinm或者cosm来确定m,个人觉得这样太容易出错 最好的方法是根据tanm确定(见上)。 举例说明:sinx+√3cosx=2sin(x+m), 因为tanm=√3,所以m=60度,所以原式=2sin(x+60度) 50 . A、B为椭圆x2/a2+y2/b2=1上任意两点。若OA垂直OB,则有1/∣OA∣2+1/∣OB∣2=1/a2+1/b2 (一)方法角度 (1)函数的零点,极值点的问题: 20XX(I卷),20XX(I、II卷), 20XX( II卷,III卷)(如何选取函数,如何取点) (2)恒成立求参数范围问题: 20XX,20XX,20XX(I卷) (含参求导、分离参数、化两个函数(一直一曲)) (3)函数不等式(证明和利用解决问题): 20XX(II卷),20XX(I卷), 20XX(III卷)(函数不等式的等价变形、数列求和问题的函数不等式寻找) (4)函数的值域问题(包含任意存在、派生函数值域): 20XX(II卷), 20XX(II卷)(隐零点问题的整体代换(虚设零点)) (5)双变量问题: 20XX(I卷), 20XX( I卷)(极值点偏移问题,双变量问题的函数构造) (6)数值估计: 20XX(II卷)(极值点附近的x值的选择) (7)高等数学背景下的压轴题处理: (定积分法求和,极限思想的应用(罗必达法则),双变量中的拉格朗日中值定理) 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单; 2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 四、概率问题 1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(根据p1+p2++pn=1); 5、注意计数时利用列举、树图等基本方法; 6、注意放回抽样,不放回抽样; 7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8、注意条件概率公式; 9、注意平均分组、不完全平均分组问题。 五、圆锥曲线问题 1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3、战术上整体思路要保7分,争9分,想12分。 六、导数、极值、最值、不等式恒成立(或逆用求参)问题 1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2、注意最后一问有应用前面结论的意识; 3、注意分论讨论的思想; 4、不等式问题有构造函数的意识; 5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 6、整体思路上保6分,争10分,想14分。 五种数学答题思路 在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。以下总结高考数学五大解题思想,帮助同学们更好地提分 一、函数与方程思想 函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。 二、 数形结合思想 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。 三、特殊与一般的思想 用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用 四、极限思想解题步骤 极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果 五、分类讨论思想 同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。 函数零点定理使用不当致误 错因分析如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。 混淆两类切线致误 错因分析曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。 试卷分析法 就是把历次考试的数学卷子(包括自己做的测试卷、模拟卷——做完后会对着答案进行批改,计算得分,像正式考试一样)装订保存起来,一般是每10张为一册,然后定期进行复习。选择10张试卷为一册完全是个人经验,太少了看不出问题,太多了容易疲劳。每个人根据自己的特点可以进行调整。 通法解题法 通法就是最一般的解法。其实考试的时候多数数学题都是难度不大的题,是基础题。只要掌握好这些基础题的一般解法,一步一步来,不要老是去求新求异,通常会得比较高的分数。 题越难越好,越复杂越好?——只要认真分析一下历届高考题,就会发现不是这样的。所以说,平常认真地、“按部就班”地把基础题掌握好,考试就算考不了满分也一定不会低,最重要的是,这样的学生成绩一般不会有很大波动。 同学互助法 学习是一件很辛苦的事,几个志同道合的同学可以在一起学习。相互鼓励,相互支持,一起讨论。在这样的氛围下,枯燥会充满乐趣,成绩提高是很自然的。可以规定:今天我给你讲一个题,明天你再给我讲透一道题,效果非常好。 题海战术法 数学题海战术只是一个说法,意思就是说题还是需要多做的,这样才会熟能生巧。考试其实就是要求学生在同样的时间内用最快的速度、最高的准确率来完成同样多的题目——熟练必不可少。 知识点梳理法 这一方法非常适合于基础相对薄弱的学生。通过对主要知识点的梳理,可以让他全面了解知识结构,找到自己最薄弱的环节,然后“对症下药”。 专项训练法 不同科目的试卷有不同的题目类。如数学卷子可能有填空、选择、应用题等,如果觉得自己填空题把握不大,就专门训练填空题,直到感到游刃有余为止。 专题训练法 专题训练和专项训练不同。专题训练是侧重于内容上的训练块不太清楚,就可以找来英语语有的学生对数学中的函数感到理解不了,就针对它反复琢磨、研究。 记忆法 我们反对死记硬背,但对一些关键的公式、知识点、小结论还是需要记忆的。在考试时,遇到相关的题目,直接把记忆的内容写出来(注意再核实一下,因为记忆可能会出错),又快又准。 反思法 经常反思自己存在的问题,然后加以克服。 定计划法 凡是预则立,不预则废,定一个切实可行的计划会大大提高学习效率——制定计划时最好能掌握自己的生物钟,这一点上面已经提过了。 1掌握了空间图形在平面上的直观画法吗?(斜二测画法)。 2面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么? 3垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见 4面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大. 5两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法. 6异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。 7知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗? 8条异面直线所成的角的范围:0°<α≤90° 直线与平面所成的角的范围:0o≤α≤90° 二面角的平面角的取值范围:0°≤α≤180° 9知道异面直线上两点间的距离公式如何运用吗? 10图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。 11问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节? 12及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题) 13及其性质;经纬度定义易混.经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式.这些知识你掌握了吗? 单调性问题 研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。 极值问题 求函数y=f(x)的极值时,要特别注意f"(x0)=0只是函数在x=x0有极值的必要条件,只有当f"(x0)=0且在0 时,f"(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。 还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f"(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f"(x)=0所求的驻点是否在函数的定义域内。 切线问题 曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f"(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展理性思维。关于切线方程问题有下列几点要注意: (1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程; (2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线; (3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。 函数零点问题 函数的零点即曲线与x轴的交点,零点的个数常常与函数的单调性与极值有关,解题时要用图像帮助思考,研究函数的极值点相对于x轴的位置,和函数的单调性。 不等式的证明问题 证明不等式f(x)≥g(x)在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值等于零;而证明不等式f(x)>g(x) 在区间D上成立,等价于函数f(x)-g(x)在区间D上的最小值大于零,或者证明f(x)min≥g(x)max、 f(x)min>g(x)max。因此不等式的证明问题可以转化为用导数求函数的极值或最大(小)值问题。 选择题、填空题〈80分〉 一、命题范围及考点 1 考察范围 考察所学知识点的简单应用,以及知识点涉及的简单基本性质;学会把题目转化为数学语言;掌握一定的做题技巧。 2 高频考点 (1)集合的交并集,涉及到知识点广泛且基础 (2)复数的基本运算,共轭复数和复数的模 (3)平面向量数量积的运算,向量的模的运算;简单平面中用基底表示其他向量 (4)线性规划中最值的计算 (5)导数中求切线方程(两种出题形式) (6)几何概型(长度,面积,体积,时长等) (7)圆锥曲线(圆、抛物线、双曲线、椭圆)的性质求解析几何的解析式、离心率或其他 (8)数列(等差数列,等比数列)的性质求某一项的值,前几项的和 (9)算法的填空 (10)三角函数中利用诱导公式、两角和(差)求角的余弦、正弦、正切;看图象求出表达式 (11)解三角形 (12)几何体的三视图求几何体的表面积、体积 (13)立体几何中异面直线的夹角 (14)函数的大致图象 二、解题方法及技巧 1直接分析法 从题目出发,明白考察知识点,利用知识直接快速解题 2数形结合法 涉及函数方面的题目,将函数与其图象结合,注意函数的定义域,关注图象中的特殊点(x趋近0或无穷、恒过点等)可以更快的解题;从导数图象可知函数图象的大致趋势、最值、极值 3 特殊点求值法 对任意点成立时,为做题简便可直接选取最特殊的情况求解 4带入求值法 选择题不同于填空题,有四个备选的四个答案,把选项直接带入到题目中,成立即时正确答案;选项为取值范围时,比较四个选项的取值范围带入特殊值 5排除法 通过计算或者验证等方式确定某个答案一定错误,从而排除该答案,最后得到正确答案,即便得不到唯一答案也可以提高正确率(排除两个答案以后:¼→½) 6答题规范法 填空题需要自己填写答案,应注意答案的规范化,避免不必要的失分;对常见题型自己应该形成一套做题方法和做题步骤,按步骤做题,避免做题时情况考虑不全 解答题〈70分〉 数列或三角函数 数列: (1)题型:等差数列和等比数列的通项公式的推导,前n项求和 (2)做题方法: 通项公式求导:定义法;直接推导法;累加法;公式法;题目中出现项的加减法一般是等差数列,出现项的乘除法一般是等比数列 前n项求和:等差+等比公式法;等差*等比错位相减法;等差*等差列项法 三角函数和解三角形 (1)题型:正弦函数和余弦函数,辅助角公式,三角恒等变换,三角形面积公式,正弦定理和余弦定理 (2)做题方法: 三角函数:利用图象求表达式时先看图象确定周期再带点求出辅助角;化简表达式时需要使用辅助角公式;求增、减区间,对称轴,对称点,最值时使用五点法即可;给出单调区间求某一项的取值范围时使用五点法求出带有未知数的区间再进行比较即可 解三角形:已知边长和正弦时用正弦定理;已知边长和余弦时用余弦公式;求三角形角度或角的正弦、余弦时注意使用三角恒等变化,三角和为180°的隐形条件;求三角形周长或者面积最值时注意使用不等式,平方和公式 概率 (1)题型:频率分布直方图,茎叶图,独立性检验,利用概念和公式计算平均数、方差、中位数和众数,回归线方程 ,分层抽样,古典概型 (2)做题方法:古典概型列举时注意有规律的列举,避免少情况;计算时注意细心避免计算出错;本题计算量大难度低 立体几何 第19题:立体几何 (1)题型:线线平行或垂直,线面平行或垂直,立体几何的体积,等体积法 ,异面直线的夹角(少),线线或几何体的比值,几何体的表面积 ,点到直线的距离 (2)做题方法: 证平行或垂直时可能涉及到作辅助线,步骤要写完整且正确;不能直接找到条件时,可以逆向思维 异面直线夹角可以平移构造出夹角,利用余弦定理求出余弦值,也可以建立三维坐标,利用向量数量积求出余弦值 求几何体体积时使用等体积法转化或使用大几何体的体积减去其他几何体的体积;求线线比值时一般可以转化为两个几何体的体积比值 圆锥曲线 (1)题型:第一问一般是求椭圆/抛物线的解析方程,第二问一般题型比较广泛 (2)做题方法: 利用椭圆/抛物线性质求出解析方程(4分,简单题) 联立椭圆/抛物线与直线方程,得出一元二次方程(到这一步可得6分),再进行接下来的计算与分析,一般需要图象分析和较强的思维 导数 (1)题型:求切线方程,求未知数的值或取值范围,求极值或最值,求单调区间,求函数中未知数的取值范围等 (2)做题方法: 求导时先写出定义域,再求导(注意求导的准确性,一旦出错,后面的步骤写得再正确也无用);注意导数的几何意义:某点的导数等于该点切线方程的斜率等于该点切线方程的正切值 比较两个函数大小时注意转化为两函数极值的比较或者两函数合并为同一函数再求导 第22/23题:选修题 坐标系与参数方程 (1)题型:求直线普通方程和曲线方程的直角坐标系方程,曲线与直线的交点,曲线上的点到直线的最短距离等 (2)做题方法:把参数方程和极坐标转化为直角坐标方程,再利用平面几何的知识解答 不等式选讲 (1)题型:解不等式(去绝对值),取值范围,比较大小,求未知数的取值范围 (2)做题方法:所有涉及到绝对值时先去绝对值,去绝对值时注意方法;解不等式时主要转化为最值的比较;结合图象可以减少很多麻烦 错因分析等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q=?1时,前n项和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式Sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。 对等差、等比数列的性质理解错误 错因分析等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。 一般地,有结论“若数列{an}的前N项和Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差数列。高考数学解题 第6篇
二、高考数学解题分析:高考数学解题 第7篇
高考数学解题 第8篇
高考数学解题 第9篇
高考数学解题 第10篇
高考数学解题 第11篇
高考数学解题 第12篇
高考数学解题 第13篇
x1-x2|=1|x1x2|< ∴|f(x1)-f(x2)|<|x1-x2|恒成立. 故选
例6 若圆x2+y2=r2 (r>0)上恰有相异两点到直线4x-3y+25=0的距离等于1,则r的取值范围是( ).
[4,6] [4,6) (4,6] (4,6)
解析 圆心到直线4x-3y+25=0的距离为5,则当r=4时,圆上只有一个点到直线的距离为1,当r=6时,圆上有三个点到直线的距离等于1,故应选
题后反思 代入验证法适用于题设复杂、结论简单的选择题,这里把选项代入验证,若第一个恰好满足题意就没有必要继续验证了,大大提高了解题速度.
高考数学解题 第14篇
正确的心态
其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
千万不要分心
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
重视审题
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
高考数学解题 第15篇
由于选择题提供了唯一正确的选择支,解答又无需过程,因此可通过猜测、合情推理、估算而获得答案,这样往往可以减少运算量,避免“小题大做”.
图4例12 如图4,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF∥AB,EF=32,EF与面AC的距离为2,则该多面体的体积为( ).
152
解析 由已知条件可知,EF∥面ABCD,则F到平面ABCD的距离为2,∴VF-ABCD=13×32×而该多面体的体积必大于6,故选
题后反思 有些问题,由于受条件限制,无法(有时也没有必要)进行正确的运算和判断,而又能依赖于估算,估算实质上是一种数字意义,它以正确的算理为基础,通过合理的观察、比较、判断、推理,从而做出正确的结论.估算省去了很多推导过程和复杂计算,节省了时间,显得快捷,其应用非常广泛,它是人们发现问题、研究问题和解决问题的一种重要方法.
求解选择题的方法还有归纳推导法、割补法、无招胜有招等方法,限于篇幅,不再赘述.
高考数学选择题解题技巧相关
高考数学解题 第16篇
缺步解答——化繁为简,能做多少算多少,如果遇到一个很困难的数学问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些数学解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,因为判卷是不只看结果的。
一道大题中第一题的答案是下一题的条件。很多同学在做数学压轴题时都忽略了一个重要条件,就是第一小题的答案。一般第一小题很简单,第二题很难,有的同学忽略了第一题答案可以作为下一题条件这个重要因素
所以耗时很久也解答不出来。建议考生罗列题目给出的条件时,一定要把第一小题的答案也考虑进去。当然,不是每个数学压轴大题都是这样的,也有很多压轴题的不同小题给出不同条件,希望考生们能够根据实际情况随机应变。
高考数学压轴题,像一块硬骨头,要敢于“啃”,不要惧怕。数学压轴题往往有两问或者三问,第一问通常比较容易,要做好第一问,同时也为做好后面的问题打下基础。对后面的问题,即使不能够写出完整的解答过程,也要大胆的去做,能做多少是多少,要把自己的想法写出来。
高考数学解题 第17篇
合理分配数学答题时间
大家都知道,高考数学考试分为选择题、填空题、解答题三大部分,由于三部分所占的分数份额不同,难度不同,考生可以就自己平时的速度,将这三者的答题时间合理分配。这三个部分,相对来说,高考数学选择题是可以通过排除法、答案代入法、任意数字代入法等方式得到答案,需要的时间也相对较少,填空题的计算过程通常不会太复杂,每个空格所占的分数也不会很高,因此,高考中要适当地将时间留给更好做数学解答题。
做题选择由简到难的方式
高考考生们,想要在高考中取得高分,切记遇到难题不愿意、不甘心放弃,要懂得适当地迂回战术,遇到难题先将其略过,等到其他题目都完成以后,利用剩下的时间再慢慢研究,避免得不偿失的状况出现,还可以节省时间,分配出高考数学难题答题时间。并且,数学解答题每写出一个步骤,所得到的分数,都远远可能高于一道数学选择题或者填空题的分数,因此,做题也要分清轻重。
养成检查的好习惯
有很大一部分高考考生,都会在公布答案之后大呼遗憾,因为很多失分都是不应该的,都是不经意地疏忽造成的。所以,当这种习惯养成,即便是在紧张的高考场上,也能够自然而然地以平和的心态检查下去,减少不必要的数学失分情况出现。
推荐访问:解题 高考数学 高考数学解题17篇 高考数学解题(合集17篇) 高考数学题解题
上一篇:2023年外贸常用英语口语