当前位置: 智迪文档网 > 范文大全 > 公文范文 >

五年级数学复习资料8篇【精选推荐】

| 来源:网友投稿

五年级数学复习资料第1、分数数的加法和减法(1)同分母分数加、减法(分母不变,分子相加减)(2)异分母分数加、减法(通分后再加减)(3)分数加减混合运算:同整数。(4)结果要是最简分数2、带分数加下面是小编为大家整理的五年级数学复习资料8篇,供大家参考。

五年级数学复习资料8篇

五年级数学复习资料 第1篇

1、分数数的加法和减法

(1) 同分母分数加、减法 (分母不变,分子相加减)

(2) 异分母分数加、减法 (通分后再加减)

(3) 分数加减混合运算:同整数。

(4) 结果要是最简分数

2、带分数加减法:

带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

附:具体解释

(一)同分母分数加、减法

1、同分母分数加、减法:

同分母分数相加、减,分母不变,只把分子相加减。

2、计算的结果,能约分的要约成最简分数。

(二)异分母分数加、减法

1、分母不同,也就是分数单位不同,不能直接相加、减。

2、异分母分数的加减法:

异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

(三)分数加减混合运算

1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

2、整数加法的交换律、结合律对分数加法同样适用。

第六单元 统计与数学广角

1、众数:
一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。

众数能够反映一组数据的集中情况。

在一组数据中,众数可能不止一个,也可能没有众数。

2、中位数:

(1)按大小排列;

(2)如果数据的个数是单数,那么最中间的那个数就是中位数;

(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

3、平均数的求法:

总数÷总份数=平均数

4、一组数据的一般水平:

(1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

(2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

5、平均数、中位数和众数的联系与区别:

① 平均数:

一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

容易受极端数据的影响,表示一组数据的平均情况。

② 中位数:

将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。

它不受极端数据的影响,表示一组数据的一般情况。

③ 众数:

在一组数据中出现次数最多的数叫做这组数据的众数。

它不受极端数据的影响,表示一组数据的集中情况。

5、统计图:我们学过——条形统计图、复式折线统计图。

条形统计图优点:条形统计图能形象地反映出数量的多少。

折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

注:① 画图时注意:

一“点”(描点)、 二“连”(连线)、三“标”(标数据)。

②要用不同的线段分别连接两组数据中的数。

6、 打电话:

规律——人人不闲着,每人都在传。(技巧:已知人数依次 × 2)

(1)逐个法:所需时间最多。

(2)分组法:相对节约时间。

(3)同时进行法:最节约时间

五年级数学复习资料 第2篇

8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。二是给出坐标中的一个点,要能用数对表示。

第三单元小数除法

10、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:÷表示已知两个因数的积,一个因数是,求另一个因数是多少。

11、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

13、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大(缩小),商随着扩大(缩小)。③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

14、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如……的循环节是简写作

15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数。


五年级数学复习资料 第3篇

1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。

4、分数与除法

A÷B=A/B(B≠0,除数不能为0,分母也不能够为0) 例如:4÷5=4/5

5、真分数和假分数、带分数

1、真分数:分子比分母小的分数叫真分数。真分数<1。

2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1

3、带分数:带分数由整数和真分数组成的分数。带分数>

4、真分数<1≤假分数

真分数<1<带分数

6、假分数与整数、带分数的互化

(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子, 如:

(2)整数化为假分数,用整数乘以分母得分子 如:

(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:

(4)1等于任何分子和分母相同的分数。如:

7、分数的基本性质:

分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。

9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

如:24/30=4/5

10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

如:2/5和1/4 可以化成8/20和5/20

11、分数和小数的互化

(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……

如:

(2)分数化为小数:

方法一:把分数化为分母是10、100、1000……

如:

方法二:用分子÷分母

如:3/4=3÷

(3)带分数化为小数:

先把整数后的分数化为小数,再加上整数

12、比分数的大小:

分母相同,分子大,分数就大;

分子相同,分母小,分数才大。

分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

14、两个数互质的特殊判断方法:

① 1和任何大于1的自然数互质。

② 2和任何奇数都是互质数。

③ 相邻的两个自然数是互质数。

④ 相邻的两个奇数互质。

⑤ 不相同的两个质数互质。

⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

15、求最大公因数的方法:

① 倍数关系:最大公因数就是较小数。

② 互质关系:最大公因数就是1

③ 一般关系:从大到小看较小数的因数是否是较大数的因数。

16、分数知识图解:

五年级数学复习资料 第4篇

1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征

1) 个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。

如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等

4:自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是

关系:
奇数+、- 偶数=奇数

奇数+、- 奇数=偶数

偶数+、-偶数=偶数。

5、自然数按因数的个数来分:质数、合数、1、0四类.

质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1:
只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4,连续的两个质数是2、3。

每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97

100以内找质数、合数的技巧:

看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数

质数×质数=合数

6、最大、最小

A的最小因数是:1;

A的最大因数是:A;

A的最小倍数是:A;

最小的自然数是:0;

最小的奇数是:1;

最小的偶数是:0;

最小的质数是:2;

最小的合数是:4;

7、分解质因数:把一个合数分解成多个质数相乘的形式。

用短除法分解质因数 (一个合数写成几个质数相乘的形式)。

比如:30分解质因数是:(30=2×3×5)

8、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7

两个合数的互质数:8和9

一质一合的互质数:7和8

两数互质的特殊情况

⑴1和任何自然数互质;

⑵相邻两个自然数互质;

⑶两个质数一定互质;

⑷2和所有奇数互质;

⑸质数与比它小的合数互质;

9、公因数、最大公因数

几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。

用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

如果两数是倍数关系时,那么较小的数就是它们的最大公因数。

如果两数互质时,那么1就是它们的最大公因数。

10、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

11、求最大公因数和最小公倍数方法

用12和16来举例

1、求法一:(列举求同法)

最大公因数的求法:

12的因数有:1、12、2、6、3、4

16的因数有:1、16、2、8、4

最大公因数是4

最小公倍数的求法:

12的倍数有:12、24、36、48、…

16的倍数有:16、32、48、…

最小公倍数是48

2、求法二:(分解质因数法)

12=2×2×3

16=2×2×2×2

最大公因数是:

2×2=4(相同乘)

最小公倍数是:

2×2×3×2×2= 48(相同乘×不同乘)

五年级数学复习资料 第5篇

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽 -高

a=L÷4-b-h

宽=棱长总和÷4-长 -高

b=L÷4-a-h

高=棱长总和÷4-长 -宽

h=L÷4-a-b

正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

无底(或无盖)

长方体表面积= 长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2

S=2(ah+bh)

贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh

长=体积÷宽÷高 a=V÷b÷h

宽=体积÷长÷高 b=V÷a÷h

高=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a = a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L = 1dm3 1ml = 1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体 =V现在-V原来

也可以 V物体 =S×(h现在- h原来)

V物体 =S×h升高

8、【体积单位换算】

大单位×进率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位×进率=小单位

小单位÷进率=大单位

长度单位:

1千米 =1000 米 1 分米=10 厘米

1厘米=10毫米 1分米=100毫米

1米=10分米=100厘米=1000毫米

(相邻单位进率10)

面积单位:

1平方千米=100公顷

1平方米=100平方分米

1平方分米=100平方厘米

1公顷=10000平方米(平方相邻单位进率100)

质量单位:

1吨=1000千克

1千克=1000克

人民币:

1元=10角 1角=10分 1元=100分

五年级数学复习资料 第6篇

1、要使41□5能被3整除,□中可填的数有( )。

A、1个 B、2个 C、3个 D、无法比较

2、投掷3次硬币,有2次正面朝上,有1次反面朝上。那投掷4次硬币反面朝上的可能性是( )。

3、一个平行四边形的面积是24平方厘米,底是6厘米,高是( )。

A、4厘米 B、6厘米 C、8厘米 D、3厘米

4、42分=( )小时。

A、 B、 C、 D、

5、一根16米长的绳子,对折后又对折,每段长是( )。

A、8 B、4 C、2 D、16

6、最小的质数与最小的合数的积是( )。

A、2 B、4 C、6 D、8

7、已知两个质数的积是21,这两个质数的和是( )。

A、9 B、10 C、11 D、12

8、两个完全一样的梯形可以拼成一个平行四边形,这个平行四边形的底等于( )。

A、梯形的高 B、梯形的上底 C、梯形上底与下底之和。

五年级数学复习资料 第7篇

1、在45、9、5三个数中,( )是( )的因数,( )是( )和( )的倍数。

2、15和9的最大公因数是( ),最小公倍数是( )。

3、1~20的自然数中奇数有( )个,偶数有( )个,质数有( )个,合数有( )个。

4、两个完全一样的三角形,拼成一个面积是平方厘米的平行四边形,其中一个三角形的面积

是( )平方厘米。

5、梯形的面积用字母表示( )。

6、一个平行四边形面积是38平方厘米,底是厘米,高是( )。

7、把3吨煤平均分成3堆,每堆煤重( )吨,每堆煤是3吨煤的( )。

8、把3米长的绳子平均分成5份,每份占全长的( ),每份长有( )米。

9、口袋里有大小相同的8个红球和4个黄球,从中任意摸出1个球,摸出红球的可能性是( ),

摸出黄球的可能性是( ),摸出( )球的可能性最大。

10、分母是8的最简真分数有( )个。

五年级数学复习资料 第8篇

1、直接写出得数。(共5分。)

÷ 9× ÷ ÷ ÷17=

÷8 = ×4= ÷6= ÷ ×16=

2、竖式计算(要验算,共6分)

÷ ÷ ÷

(得数保留两位小数) (得数保留两位小数)

2、脱式计算。(每小题2分,共8分。)

÷÷3 (+)÷ × ×+×

3、计算面积。(单位:米)(6分)

4、找出下列各数的最大公因数和最小公倍数。(4分)

14,15 14,28 16,24 18,12,30

5、下面的分数是最简分数的画上圆圈,不是最分数的约分。(5分)

46 713 1751 1248 1391

6、通分比较下列各分数的大小。(7分)

59 和 35 548 和772 56 、1924 和1316

五、在方格纸中分别画一个三角形、一个梯形和一个平行四边形,使它们的面积都是12cm?。(每小格的面积为1平方厘米)(共3分。)

六、解决问题。(1-3题每题3分,4-6题每题4分,共21分)

1、一根绳子长米,做一根跳绳需米,最多可以剪成几根这样的跳绳?

2、小张8分钟做了5个零件,小李9分钟做了7个同样的零件,谁做得快?

3、一个果园的形状是平行四边形,底是115米,高是80米,如果每棵果树占地10 米?,这个果园一共可植多少棵树?

4、 一个油桶最多装油千克,要把36千克的油装在这样的油桶里,至少需要多少个油桶?

5、教室的长是8米,宽是6米,如果用边长是2分米的方砖铺地,需要多少块方砖?如果每块方砖30元,一共要多少元?

6、一艘轮船,每小时行驶千米,小时到达目的地。返回时用了小时,返回时平均每小时行驶多少千米?

推荐访问:

相关推荐

热门文章

2024年浅谈纪检监察工作面临困难及对策

民主政治是实施权力监督的环境条件,而民主政治的精髓就是通过有效的权力配置实现以权力制约权力。构建社会主义和谐社会,建立政治文明国家,就要从严治党,就要加强党内监督,尤其要加强对党的各级组织、党的领导干

政治机关建设方面存在的不足和改进(4篇)

政治机关建设方面存在的不足和改进

2024公安民警职务晋升(3篇)

公安民警职务晋升

小学思政课实施方案小学思政课实施方案(完整)

随着国家对素质教育要求的不断加强,小学思政课在课程中的地位也越来越重要,是实现全面育人的重要组成部分。小学思政课是指以道德素养、宪法法律、人生观价值观、民族精神、科学技术、文化艺术、体育健康等为核心,

2024落实第一议题制度会议记录(5篇)

落实第一议题制度会议记录

2024年度关于加强公安机关网络舆情风险防范工作部分思考

当前,随着互联网的广泛普及和信息技术的快速发展,各种社会思潮、意识形态、价值观念在网络上交织碰撞,所形成的“网络话语”逐渐成为重要的舆情力量,使当前的社会舆论环境发生重大而深刻的变化。以“两微一端”为

基督教为亡者祈祷经文6篇【完整版】

基督教为亡者祈祷经文(诗班唱诗歌,等候开会)主持人:基督徒()荣归天家追思礼拜现在开始。主持人:全体肃立、默哀(信徒祷告不超一分钟为好)……默哀毕。主持人:

那些借调人到底怎么留下来?(2024年)

上级单位之所以要“借调”,恰恰说明这个单位缺人,特别是缺能做事、会做事的人,这就意味着有打破“借而不调”僵局的希望,从而名正言顺一直留下来。下面我结合身边朋友的真实故事说说怎么“调”。方案一:保持耐心

共青团xx市委“喜迎二十大、永远跟党走、奋进新征程”主题教育实践活动启动仪式主持词(全文完整)

文章详情共青团xx市委喜迎二十大、永远跟党走、奋进新征程主题教育实践活动启动仪式主持词尊敬的领导、全体青年朋友们:在中国共产主义青年团成立100周年之际,共青团中央决定,围绕迎接和学习宣传贯彻党的二十

2023最新烈士陵园闹鬼鬼把孩子追到烈士陵园(五篇)

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我

意识形态方面方面存在问题和不足(4篇)

意识形态方面方面存在问题和不足

关于贯彻落实中央八项规定精神实施办法【完整版】

控制会议数量和规模。集团上下要严格执行集团相关会议管理办法,本着务实高效原则,切实减少各类会议活动,能不开的坚决不开,可以合并的坚决合并,严禁走形式、以会议代替落实。严格会议审批程序,集团、二级单位的